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Isomorphism and Word problem

Isomorphism problem: Given finite presentations 〈Σ | R〉 and 〈Σ′ | R ′〉, are
the groups isomorphic?

Special cases:

virtually free presentation.

context-free grammar for the word problem.

Word problem for a group G = 〈Σ | R〉: Given a word w ∈ Σ∗, is w =G 1?

WP(G ) = {w ∈ Σ∗ | w =G 1 }
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Warm-Up: Isomorphism problem for free groups

Input: Finite presentations 〈Σ | R〉 and 〈Σ′ | R ′〉.
Promise: 〈Σ | R〉 and 〈Σ′ | R ′〉 are free groups.

Question: Is 〈Σ | R〉 ∼= 〈Σ′ | R ′〉?

This is decidable:

Add relations ab = ba for a, b ∈ Σ and a2 = 1 for a ∈ Σ.

Same for 〈Σ′ | R ′〉.
Use linear algebra to check isomorphism of F2 vector spaces.
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Context-free Languages

A context-free grammar is a tuple (V ,Σ,P,S) with P ⊆ V × (V ∪ Σ)∗:

Start with S and rewrite A to α if A→ α ∈ P.
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Context-free Languages

A context-free grammar is a tuple (V ,Σ,P,S) with P ⊆ V × (V ∪ Σ)∗:

Start with S and rewrite A to α if A→ α ∈ P.

Introduced by Noam Chomsky (1950s) to describe natural language

heavily studied in theoretical computer science

application in programming languages/compilers etc.

Σ = {:=, ; , if, then, else, endif,while,do, endwhile, (, ),+, ∗,=,¬,∧},
V = {A,B,C ,X } ,

C → X := A | C ;C | if B then C else C endif | while B do C endwhile

A→ X | (A + A) | (A ∗ A)

B → A = A | ¬B | B ∧ B
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Context-free Languages

A context-free grammar is a tuple (V ,Σ,P,S) with P ⊆ V × (V ∪ Σ)∗:

Start with S and rewrite A to α if A→ α ∈ P.

A group G is context-free iff WP(G ) is context-free

Example

Free groups are context-free:

S → aSaS | aSaS | bSbS | bSbS | 1

Fact

If K is context-free and L is regular, then K ∩ L is context-free.

Example

K = WP(F2)
L = freely reduced words  K ∩ L = { 1 } is context-free
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Virtually free groups

Virtually free = free subgroup of finite index

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free.

1→ F → G → Q → 1 with F free, Q finite

Virtually free presentation:

basis X of F ,

a system of representatives R ⊆ G of F\G
multiplication rules: for q ∈ R, a ∈ R ∪ X there are f ∈ F , r ∈ R with

qa = f r .

Example

Let F = Z = 〈x〉 , Q = Z/2Z, R = { 1, a }
with rules ax = xa, aa = 1.
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The isomorphism problem for virtually free groups

G1

F1 = Z = 〈x〉 , Q1 = Z/2Z, R1 = { 1, a }
with rules ax = xa, aa = 1.

G2

F2 = Z = 〈y〉 , Q2 = Z/2Z, R2 = { 1, b }
with rules by = yb, bb = y ,

G3

F3 = Z = 〈z〉 , Q3 = Z/2Z, R3 = { 1, c }
with rules cz = zc , cc = zz .

Then G1
∼= G3

∼= Z× Z/2Z (via z 7→ x , c 7→ ax) and G2
∼= Z.
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The isomorphism problem for virtually free groups

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable
(input: arbitrary presentations with the promise to be virtually free).

Theorem (Sénizergues, 1993)

The isomorphism problem with virtually free presentations as input is
primitive recursive.

Theorem (Sénizergues, 1996)

The isomorphism problem with context-free grammars as input is primitive
recursive.

Theorem (Sénizergues, W. 2018)

The isomorphism problem

with virtually free presentations as input is in PSPACE,

with context-free grammasr as input it is in SPACE(22O(n)
).
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Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy ≤ Gs(y).

3 for each y ∈ E (Y ), an isomorphism fy : Gy → Gy with fy ◦ fy = Id.

Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y ))

∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1

, yay = fy (a)

| x ∈ T

, y ∈ E (Y ), a ∈ Gy

}

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 9/32



Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy ≤ Gs(y).

3 for each y ∈ E (Y ), an isomorphism fy : Gy → Gy with fy ◦ fy = Id.

Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y ))

∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1

, yay = fy (a)

| x ∈ T

, y ∈ E (Y ), a ∈ Gy

}

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 9/32



Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy ≤ Gs(y).

3 for each y ∈ E (Y ), an isomorphism fy : Gy → Gy with fy ◦ fy = Id.

Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y ))

∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1

, yay = fy (a)

| x ∈ T

, y ∈ E (Y ), a ∈ Gy

}

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 9/32



Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy ≤ Gs(y).

3 for each y ∈ E (Y ), an isomorphism fy : Gy → Gy with fy ◦ fy = Id.

Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1

, yay = fy (a)

| x ∈ T

, y ∈ E (Y ), a ∈ Gy

}

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 9/32



Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy ≤ Gs(y).

3 for each y ∈ E (Y ), an isomorphism fy : Gy → Gy with fy ◦ fy = Id.

Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 9/32



Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Example

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 10/32



Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Example

Armin Weiß On the isomorphism problem for virtually free groups Proof part 1 10/32



Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Example

Fm
1

Gy1 = {1}

Gy2 = {1}
...

Gym = {1}
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Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y
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P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Example

Z/2Z Z/3Z

{1}

PSL(2,Z) ∼= Z/2Z ∗ Z/3Z
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Definition (Fundamental group)

The fundamental group π1(G,T ) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Let T ⊆ E (Y ) be a spanning tree of Y

π1(G,T ) = F (E (Y )) ∗ *
P∈V (Y )

GP

modulo defining relations

{ x = 1, yay = fy (a) | x ∈ T , y ∈ E (Y ), a ∈ Gy }

Example

〈a〉 y

BSp,q =
〈
a, y

∣∣ yapy−1 = aq
〉

edge groups Gy = 〈ap〉 and Gy = 〈aq〉 and
isomorphism ap 7→ aq
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Theorem (Karrass, Pietrowski, Solitar 73)

A f. g. group is virtually free iff it is the fundamental group of a finite graph
of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let G1 and G2 be reduced finite graph of groups with finite vertex groups.
Then π1(G1,T1) ∼= π1(G2,T2) iff G1 can be transformed into G2 by a
sequence of slide moves.
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A f. g. group is virtually free iff it is the fundamental group of a finite graph
of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let G1 and G2 be reduced finite graph of groups with finite vertex groups.
Then π1(G1,T1) ∼= π1(G2,T2) iff G1 can be transformed into G2 by a
sequence of slide moves.

Example (Slide move)

P

Gx

Gy

 

P

Gx

Gy

If there is some g ∈ GP such that g−1G x
x g ≤ G y

y .
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A f. g. group is virtually free iff it is the fundamental group of a finite graph
of groups with finite vertex groups.
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It can be decided in NSPACE(n) whether π1(G1,T1) ∼= π1(G2,T2) given
two graph of groups G1 and G2 with finite vertex groups.

Krstić’s proof.

For both input groups guess a GoG + an isomorphism

verify that the guesses are correct

check the two GoGs for isomorphism
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New approach

Show that the GoG and the isomorphism are “small”.

Guess a GoG + an isomorphism.

Check that the guess is correct.

Check the two GoGs for isomorphism.

Theorem (Sénizergues, W. 2018)

The following problem is in NTIME(22O(n)
):

Input: a c.f grammar for WP(G ),
Compute a GoG G with finite vertex groups and π1(G,T ) ∼= G

Theorem (Sénizergues, W. 2018)

The following problem is in NP:
Input: a group G given as virtually free presentation,
Compute a GoG G with finite vertex groups and π1(G,T ) ∼= G.
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Small graph of groups

Main Lemma

Let G be given as context-free grammar of size N ≥ 4 for WP(G ). There
is a graph of groups G over Y and an isomorphism ϕ : π1(G,T )→ G with

1 |V (Y )| ≤ N50·2N ,

2 |GP | ≤ N50·2N for all P ∈ V (Y ),

3 |ϕ(a)| ≤ 24 · N175·2N for every a ∈ ∆ = generating set of π1(G,T ).

 22O(N)
size

If G is given as virtually free presentation of size M ≥ 4, then

1 |V (Y )| ≤ M + 1,

2 |GP | ≤ M for all P ∈ V (Y ),

3 |ϕ(a)| ≤ 12(M + 1)6 for every a ∈ ∆.

 MO(1) size
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Guess and Check

Let Σ generate G and p : Σ∗ → G the canonical projection.

WP(G ) = p−1(1) = {w ∈ Σ∗ | w =G 1 } is context-free.

1 Guess the graph of groups G and a hom. ϕ : ∆∗ → Σ∗, within the
bounds of the Main Lemma (∆ = generators of π1(G,T ))

2 Verify that ϕ induces a homomorphism ϕ̃ : π1(G,T )→ G :

check whether ϕ(r) =G 1 for all Relations r = 1 of π1(G,T )

3 Verify that ϕ̃ is injective:

test whether ϕ−1( WP(G )︸ ︷︷ ︸
context-free

) ∩ { normal forms }︸ ︷︷ ︸
regular

= {ε}

4 Verify that ϕ is surjective:

for all a ∈ Σ test if a ∈ {ϕ(g) | g ∈ ∆ }∗ (rational subset membership)

⇐⇒ WP(G ) ∩ a−1 · {ϕ(g) | g ∈ ∆ }∗ 6= ∅
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Proof of the Main Lemma

Theorem (Sénizergues 96)

Let G be a context-free group and N be the size of a c.f. grammar in
Chomsky normal form for its word problem. Then

|H| ≤ N12·2N+10 for every finite subgroup H ≤ G,

every reduced graph of groups for G has at most N12·2N+11 edges.

If G is given as virtually free presentation of size M ≥ 4, then

|GP | ≤ M for all P ∈ V (Y ),

|V (Y )| ≤ M + 1,

 remains to bound |ϕ(a)| for a ∈ ∆

Idea: Follow the proof of the Muller-Schupp theorem by Diekert, W. 2013

 Rest of the talk
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Muller and Schupp’s Proof (1983)

Every infinite virtually free group has more than one end.

Example: Z× Z/2Z
Remove

· · · · · ·

Two infinite connected components.

Stallings’ Structure Theorem: every group with more than one end
splits as HNN extension or amalgamated product over a finite
subgroup.

G finitely presented  G is accessible:
this splitting happens only finitely many times (Dunwoody 1985).
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Virtually free groups are “tree-like”

Let Γ(G ) be the Cayley graph of a context-free group G . Then:

Γ(G ) is quasi-isometric to a tree

Γ(G ) has finite tree width

The Cayley graph of PSL(2,Z) ∼= Z/2Z ∗ Z/3Z has finite tree-width.
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Γ(G ) has finite tree width

Z× Z/2Z

· · · · · ·

↓

· · · · · ·

Bass-Serre theory: an action on a tree with finite stabilizers and finitely
many orbit gives us the graph of groups

Aim: construct this tree
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Cuts

Definition

A cut is a subset C ⊆ V (Γ) such that

C and C are non-empty and connected,

the boundary δC (= edges from C to C ) is finite.
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Cuts
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the boundary δC (= edges from C to C ) is finite.
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Tree sets

Definition

A tree set is a set of cuts C such that

C ∈ C =⇒ C ∈ C,

cuts in C are pairwise nested:

C ⊆ D or C ⊆ D or D ⊆ C or D ⊆ C for all C ,D ∈ C,

the partial order (C,⊆) is discrete:

{E ∈ C | C ⊆ E ⊆ D } if finite for all C ,D ∈ C.
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Tree sets

vertices = equivalence classes of edges:
v E

D
C

v = {C ,D,E }

Definition

For C , D ∈ C the relation C ∼ D is defined as follows:

Either C = D,

or C $ D and there is no E ∈ C with C $ E $ D.

Proposition (Dunwoody, 1979)

The graph T (C) is a tree, where

Vertices: V (T (C)) = { [C ] | C ∈ C } ,
Edges: E (T (C)) =

{{
[C ], [C ]

} ∣∣ C ∈ C } .
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Cuts in a graph

The Cayley graph of PSL(2,Z) ∼= Z/2Z ∗ Z/3Z.

Armin Weiß On the isomorphism problem for virtually free groups Cuts and structure trees 21/32



Vertices in the structure tree

Three cuts in one equivalence class = one vertex in T (C).
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Example
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How to find a tree set?

Aims:

find a structure tree for an arbitrary locally finite, connected graph Γ

if Γ is tree-like, the structure tree should be locally finite
 every bi-infinite geodesic should be split by some cut

First idea: take all cuts

Problems:

not nested
· · · · · ·

not a discrete partial order

· · · · · ·

...
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Minimal cuts

Minimal cuts = cuts which are minimal splitting a bi-infinite geodesic.

· · · · · ·

...

δD
δC

δE
α

β

C ∈ Cmin(α)

D ∈ C(α) ∩ Cmin but D /∈ Cmin(α)

E 6∈ Cmin
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Accessible graphs

A graph Γ is accessible iff ∃K ∈ N with |δC | ≤ K for all C ∈ Cmin.

There are non-accessible graphs.
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Accessible graphs

A graph Γ is accessible iff ∃K ∈ N with |δC | ≤ K for all C ∈ Cmin.

There are non-accessible graphs.

Theorem (Thomassen, Woess, 1993)

G is accessible iff its Cayley graph Γ is accessible.

Theorem (Dunwoody, 1993)

There is a non-accessible group.

 There are non-accessible Cayley graphs.

But: every Cayley graph you can draw in a meaningful way is accessible.

 Tree-like Cayley graphs are accessible.
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Accessible graphs

Lemma

The partial order (Cmin,⊆) is discrete iff Γ is accessible.

Lemma

Fix K ∈ N and an edge e of Γ. There are only finitely many cuts C with
e ∈ δC and |δC | ≤ K.

Proof (Thomassen, Woess, 1993).

CKΓ,e = cuts in Γ with e ∈ δC and |δC | ≤ K .
Induction on K : the case K = 1 is trivial.

Let K > 1 and e = { u, v } and let
e1, . . . , em be a path from u to v .

Then

CKΓ,e ⊆
k⋃

i=1

CK−1
Γ−e,ei .
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Minimal cuts

Minimal cuts still might not be nested:

· · ·

· · ·

· · ·

.

.

.

.

.

.

.

.

.

But, then we can switch to a subset.
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Minimal Cuts

Let C ,D ∈ Cmin not nested:

E

E ′

α or β β

α

C C

D

D

|δC | ≤ |δE | and |δD| ≤
∣∣δE ′∣∣

δE ∪ δE ′ ⊆ δC ∪ δD
δE ∩ δE ′ ⊆ δC ∩ δD

|δE |+
∣∣δE ′∣∣ ≤ |δC |+ |δD|

 take E and E ′ instead of C and D.
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Optimal cuts

A cut C is optimal, if

C ∈ Cmin(α) for some bi-infinite geodesic α and

the number of non-nested cuts is minimal among Cmin(α).

Theorem (Diekert, W. 13)

For a tree-like Cayley graph Γ, the subset Copt ⊆ Cmin satisfies:

optimal cuts form a tree set,

every bi-infinite geodesic is split by an optimal cut,

G acts on Copt with finitely many orbits,

equivalence classes [C ] are finite.

 G acts on the tree T (Copt) with finitely many orbits and finite vertex
stabilizers.

G\T (Copt) is the desired graph of groups (resp. a reduced subset of Copt).
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Back to the isomorphism problem:
Roadmap for Proving the Main Lemma

Aim: find “small” isomorphism ϕ

ϕ(g) = g for g ∈ GP = Stab(P)

ϕ(y) conjugates elements of GP into the stabilizer of some nearby
Q ∈ V (T (Copt))

Show:

boundaries of minimal cuts are small

equivalent cuts are not far apart

 find representatives for T (Copt) within B(22O(N)
) (resp. B(NO(1)) )
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Summary

Isomorphism test for fundamental groups of GoGs with finite vertex
groups is in NSPACE(n).

Given a context-free grammar, we can compute the GoG in
NTIME(22O(n)

).

Given a virtually free presentation, we can compute the GoG in NP.

Bounds via cuts in the structure tree.

Open Questions:

Precise complexity bounds.

What about other groups (e. g. hyperbolic)?

Algorithm for finding structure trees for finite graphs?

Thank you!
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