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Dehn’s fundamental problems (and others)

Let G be a f. g. group, generated by a finite set Σ = Σ−1 ⊆ G .

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?

Conjugacy problem: Given v ,w ∈ Σ∗.
Question: ∃ z ∈ G such that zvz−1 = w?

(Uniform) Subgroup membership problem:
Given v ,w1, . . . ,wn ∈ Σ∗. Question: v ∈ 〈w1, . . . ,wn〉?

Classification:

Decidable vs. undecidable.

Complexity: e. g. primitive recursive, NP, polynomial time

Inside polynomial time:

linear time (e. g. WP/CP of hyperbolic groups)
LOGSPACE (e. g. WP of linear groups)
parallel complexity
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Parallel Complexity

Why parallel complexity?

Finer classification of problems inside polynomial time.

We cannot be faster than linear time on one processor,
but we can on many processors.
Parallel computing is more and more important in the “real world”:

while clock frequencies almost do not increase anymore
4 cores on most desktop processors
> 2000 cores on high-end graphics devices
> 106 cores on supercomputers
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Parallel Complexity

Machine models:

parallel RAMs (random access machines)
(Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

input gates (has only outgoing edges)
Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing
edges)
output gates (only incoming edges)
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Parallel Complexity

Machine models:

parallel RAMs (random access machines)
(Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

input gates (has only outgoing edges)
Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing
edges)
output gates (only incoming edges)

size = number of gates
depth = longest path from input to output gate

NC = problems which can be solved by a family of circuits of
polynomial size and polylogarithmic depth

= problems which can be solved by a parallel RAM with a polynomial
number of processors in polylogarithmic time.
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Parallel Complexity

Inside NC:

NCi = solved by a family of circuits of depth O(logi n) and
polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

NC1 ⊆ LOGSPACE ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P.

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

“Proof”: Given matrices A1, . . . ,An, compute∏
Ai mod p

for sufficiently many primes p.
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Parallel Complexity

Inside NC1:

AC0 = solved by a family of circuits of constant depth and
polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

TC0 allows additionally majority gates:
Maj(w) = 1 iff |w |1 ≥ |w |0 for w ∈ { 0, 1 }∗.

Theorem (Robinson, 1993)

The word problem of

Baumslag-Solitar groups BS1,q and

nilpotent groups

are uniform TC0-complete.

More problems in TC0:

conjugacy problem in BS1,q (Diekert, Myasnikov, W., 2014)
word problem in solvable linear groups (König, Lohrey, 2015)
word and conjugacy problem in free solvable groups (Myasnikov,
Vassileva, W., 2016)
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Word problem of Z

The word problem of Z with generators {+1,−1 } is in TC0.

Use 0 to encode −1 and 1 for 1. Let w ∈ { 0, 1 }∗,

w represents 0 in Z ⇐⇒ |w |1 = |w |0
⇐⇒ Maj(w) ∧ Maj(¬w)

x1 x2 x3 · · · xn

Maj Maj

¬· · ·¬¬¬

∧

output
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Arithmetic problems in TC0

Iterated Addition

input: n-bit numbers r1, . . . , rn,

compute
∑n

i=1 ri .

Iterated Addition is in TC0.

Iterated Multiplication

input: n-bit numbers r1, . . . , rn,

compute
∏n

i=1 ri .

Integer Division

input: n-bit numbers a, b,

compute
⌊
a
b

⌋
.

Theorem (Hesse, 2001)

Iterated Multiplication and Integer Division are in TC0.
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Reductions

For a formal language L ⊆ { 0, 1 }∗, AC0(L) allows additionally
oracle gates for L.
L′ ∈ AC0(L) means L′ is AC0-reducible to L.
Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.
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oracle gates for L.
L′ ∈ AC0(L) means L′ is AC0-reducible to L.
Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.

The word problem of Z with generators {+1,−1 } is TC0-complete.

Again, 1 encodes 1 and 0 encodes −1. For u ∈ { 0, 1 }∗:

Maj(u) ⇐⇒ |u|1 ≥ |u|0
⇐⇒

∨
0≤i≤|u|

∣∣u0i
∣∣
1

=
∣∣u0i

∣∣
0

⇐⇒
∨

0≤i≤|u|

(u0i represents 0 in Z)
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Reductions

For a formal language L ⊆ { 0, 1 }∗, AC0(L) allows additionally
oracle gates for L.
L′ ∈ AC0(L) means L′ is AC0-reducible to L.
Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.

TC0 = AC0(WP(Z)) ⊆ AC0(WP(F2))

AC0(WP(F2)) ⊆ LOGSPACE
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Overview: small circuit classes

AC0 = FO(+, ∗) Z/nZ with one monoid generator

ACC0 = FO(+, ∗;Mod) finite solvable

TC0 = FO(+, ∗;Maj) Z, linear solvable (e. g. nilpotent),
free solvable

NC1 = AC0(WP(A5)) finite non-solvable,
regular languages

AC0(WP(F2)) virtually free, Baumslag-Solitar groups,
RAAGs, free products

LOGSPACE linear groups

NC hyperbolic groups

P polynomial time compressed word problem of free
groups, etc.
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Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Why compute greatest common divisors?

Subgroup membership problem of Z:

Given a, a1, . . . , an ∈ Z, is a ∈ 〈a1, . . . , an〉?
With other words are there x1, . . . , xn ∈ Z with

a = x1a1 + · · ·+ xnan?

Clearly, a ∈ 〈a1, . . . , an〉 iff gcd(a1, . . . , an) | a.
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Greatest Common Divisors

Observation

If a1, . . . , an ∈ Z are given in unary (ai is represented by 11 · · · 1︸ ︷︷ ︸
ai many

0 · · · 0),
then the gcd can be computed in TC0.

Proof

Let m = max { |ai | }. For all d ≤ m do the following:

check for all i whether there is some ci ≤ m with dci = ai
(by trying all possible values −m ≤ ci ≤ m)

The largest d for which there are such ci is the gcd.

This requires 2nm2 multiplications – all of them can be done in
parallel – and one computation of the maximum.

Corollary

The subgroup membership problem of Z (where group elements are
given as words over the generators) is in TC0.
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Greatest Common Divisors

Subgroup membership problem of Z2:

Given a, b, a1, . . . , an, b1, . . . , bn ∈ Z, is (a, b) ∈ 〈(a1, b1), . . . , (an, bn)〉?
With other words are there x1, . . . , xn ∈ Z with

a = x1a1 + · · ·+ xnan and b = x1b1 + · · ·+ xnbn?

(1) Compute d = gcd(a1, . . . , an) and check whether d - a.

(2) Compute y1, . . . , yn ∈ Z with d = y1a1 + · · ·+ ynan
(3) Add a new pair (an+1, bn+1) with an+1 = d and

bn+1 = y1b1 + · · ·+ ynbn.

(4) Subtract from all the other pairs multiples of (an+1, bn+1), to make
the first component zero:

(a′i , b
′
i ) = (ai , bi )−

ai
an+1

(an+1, bn+1)

(5) Set b′ = b − a
an+1

bn+1 and check whether there are x ′1, . . . , x
′
n ∈ Z

such that b′ = x ′1b
′
1 + · · ·+ x ′nb

′
n
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Greatest Common Divisors as linear combinations

Question

Given a1, . . . , an ∈ Z encoded in unary. Can x1, . . . , xn ∈ Z (in unary)
with d = x1a1 + · · ·+ xnan be computed in TC0?
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Given a1, . . . , an ∈ Z encoded in unary. Can x1, . . . , xn ∈ Z (in unary)
with d = x1a1 + · · ·+ xnan be computed in TC0?

If a1, . . . , an ∈ Z are encoded in binary,

it is not known whether the gcd can be computed in NC.

finding the smallest x1, . . . , xn ∈ Z is NP-complete (Majewski,
Havas, 1994).
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Given a1, . . . , an ∈ Z encoded in unary. Can x1, . . . , xn ∈ Z (in unary)
with d = x1a1 + · · ·+ xnan be computed in TC0?

Straightforward solution (try all possible values) does not work because
there are too many:

Let m = max { |ai | }. There are x1, . . . , xn ∈ Z
with |xi | ≤ m/2 – this is the best known upper bound (Majewski,
Havas, 1994).

 mn possible choices for the xi to try.

However, if n = 2, there are only m2 many values to try  TC0.

We can use this idea to compute x1, . . . , xn in TC0:
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Greatest Common Divisors as linear combinations

First, set d0 = 0 compute

di = gcd(a1, . . . , ai ) for i = 1, . . . , n

 di = gcd(di−1, ai ).

For each i , compute integers yi and zi such that di = yidi−1 + ziai .
Next compute

xi = zi ·
n∏

j=i+1

yj

in TC0 using iterated multiplication. Now, we have

x1a1 + · · ·+ xnan = gcd(a1, . . . , an).

Problem: can compute the xi only in binary in TC0.

 we have to make them smaller.
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Greatest Common Divisors as linear combinations

How to make them small?

If n = 2, this is easy:
Assume a, b > 0 and ax + by = gcd(a, b) with x ≥ b. Set p =

⌊
x
b

⌋
and

replace

x by x − bp and

y by y + ap.

If n > 2, we can apply this method for selected pairs in parallel.

For which pairs?
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Greatest Common Divisors as linear combinations

x1a1 x2a2 x3a3 · · ·

· · ·

x1a1

Blocks of size max
{
a2
i

}
Using iterated addition, we can compute how many blocks from
column i should go to column j in TC0.

Use idea for n = 2 to approximate blocks moved from column i to
column j .

Armin Weiß Greatest Common Divisors 18/25



Greatest Common Divisors as linear combinations

x1a1 x2a2 x3a3 · · ·

· · ·

x1a1

Blocks of size max
{
a2
i

}
Using iterated addition, we can compute how many blocks from
column i should go to column j in TC0.

Use idea for n = 2 to approximate blocks moved from column i to
column j .

Armin Weiß Greatest Common Divisors 18/25



Greatest Common Divisors as linear combinations

x1a1 x2a2 x3a3 · · ·

· · ·

x1a1

Blocks of size max
{
a2
i

}

Using iterated addition, we can compute how many blocks from
column i should go to column j in TC0.

Use idea for n = 2 to approximate blocks moved from column i to
column j .

Armin Weiß Greatest Common Divisors 18/25



Greatest Common Divisors as linear combinations

x1a1 x2a2 x3a3 · · ·

· · ·

x1a1

Blocks of size max
{
a2
i

}
Using iterated addition, we can compute how many blocks from
column i should go to column j in TC0.

Use idea for n = 2 to approximate blocks moved from column i to
column j .

Armin Weiß Greatest Common Divisors 18/25



Greatest Common Divisors as linear combinations

x1a1 x2a2 x3a3 · · ·

· · ·

x1a1

Blocks of size max
{
a2
i

}
Using iterated addition, we can compute how many blocks from
column i should go to column j in TC0.

Use idea for n = 2 to approximate blocks moved from column i to
column j .

Armin Weiß Greatest Common Divisors 18/25



Greatest common divisors in TC0

Theorem (Myasnikov, W., 2016)

There is a family of TC0 circuits for the following problem: given
a1, . . . , an ∈ Z encoded in unary, compute x1, . . . , xn ∈ Z in unary with
d = x1a1 + · · ·+ xnan.

Corollary

Let G be a free abelian group. Then the subgroup membership problem
for G is in TC0.

Armin Weiß Greatest Common Divisors 19/25



Greatest common divisors in TC0

Theorem (Myasnikov, W., 2016)

There is a family of TC0 circuits for the following problem: given
a1, . . . , an ∈ Z encoded in unary, compute x1, . . . , xn ∈ Z in unary with
d = x1a1 + · · ·+ xnan.

Corollary

Let G be a free abelian group. Then the subgroup membership problem
for G is in TC0.

Armin Weiß Greatest Common Divisors 19/25



Nilpotent groups

Definition

A group G is nilpotent of class c if

G = Γ1(G ) ≥ Γ2(G ) ≥ · · · Γc(G ) > Γc+1(G ) = {1}
where Γi+1 = [Γi ,G ] =

〈
x−1g−1xg for x ∈ Γi , g ∈ G

〉
.

Theorem (Macdonald, Myasnikov, Nikolaev, Vassileva, 2015)

Let G be a nilpotent group. The (uniform) subgroup membership
problem for G is in LOGSPACE.

The proof is based on so-called matrix reduction (Sims, 1994).
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Mal’cev coordinates

Let G be a nilpotent group with Mal’cev basis (a1, . . . , am) = ~a.

Each g ∈ G has a unique normal form

g = ax1
1 · · · a

xm
m =: ~a~x

with ~x = (x1, . . . , xm) ∈ Zn (if there is torsion some of them are
restricted 0 ≤ xi < ei ) and such that

[ai , aj ] ∈
〈
amax{ i ,j }+1, . . . , am

〉
.

The product of two elements can be written in the same fashion

ax1
1 · · · a

xm
m · a

y1
1 · · · a

ym
m = aq1

1 · · · a
qm
m .

The exponents q1, . . . , qm are functions of x1, . . . , xm and
y1, . . . , ym – if G is torsion-free they are polynomials.

Fact

qi (0, . . . , 0, xi , . . . , xm, y1, . . . , ym) = xi + yi (mod ei )
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Matrix reduction

Let (h1, . . . , hn) be generators of a subgroup H. We associate a matrix
of coordinates

A =

 α11 · · · α1m
...

. . .
...

αn1 · · · αnm

 ,

where (αi1, . . . αim) are the Mal’cev coordinate of hi .

We do “Gaussian elimination” until we reach a matrix satisfying (here,
πi is the position of the i-th pivot = first non-zero entry in row i):

(i) π1 < π2 < . . . < πs (where s is the number of pivots),

(ii) αiπi > 0, for all i = 1, . . . , n,

(iii) 0 ≤ αkπi < αiπi , for all 1 ≤ k < i ≤ s

(iv) if eπi <∞, then αiπi divides eπi , for i = 1, . . . , s.

(v) H ∩ 〈ai , ai+1, . . . , am〉 is generated by {hj | πj ≥ i}, for all
1 ≤ i ≤ m.
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Example: Matrix reduction

Let G = 〈a1, a2, a3 | [a1, a3]=[a2, a3]= 1, [a1, a2]= a3〉 be the
3-dimensional Heisenberg group with Mal’cev basis (a1, a2, a3).
Let H = 〈h1, h2〉 with

h1 = a6
1a

2
2a3, h2 = a4

1a
2
2.

The associated matrix is

A =

(
6 2 1
4 2 0

)
.

Compute gcd(6, 4) = 2 = 6− 4.

Add a new row corresponding to h4 = h1h
−1
2 .

Replace h1 by h′1 = h1h
−3
4 and h2 by h′2 = h2h

−2
4

Exchange first and last row and eliminate unnecessary row

Add commutators
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−2
4

Exchange first and last row and eliminate unnecessary row

Add commutators
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Matrix reduction

There are only a constant number of columns  only a constant
number of step and each can be done in TC0.

Theorem (Myasnikov, W.)

Given h1, . . . , hn ∈ G (either as unary encoded Mal’cev coordinates or
as words over the generators), Matrix reduction for the subgroup
〈h1, . . . , hn〉 is in TC0.

Corollary (Myasnikov, W.)

Let G be a nilpotent group. The (uniform) subgroup membership
problem for G is in TC0.
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More problems in TC0

Uniform algorithms/circuits for r -generated class c nilpotent groups
where r and c are fixed (Macdonald, Ovchinnikov, Myasnikov, W. –
work in progress).

Conjugacy problem

Compute kernels and images of homomorphisms

Compute centralizers

Compute coset intersection

Compute torsion subgroup

Thank you!
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