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Overview
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Amenability of Schreier graphs

Bounds for the number of elliptic elements of HNN extensions
and amalgamated products

Part II

The conjugacy problem for hyperbolic elements of HNN
extensions and amalgamated products

Strongly generic algorithms for the conjugacy problem
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Part I

Amenability of Schreier Graphs
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Graph of groups

Special cases for fundamental groups of graphs of groups:

1 Amalgamated products

G = H ?A K = 〈H,K | ϕ(a) = ψ(a) for a ∈ A 〉

for groups H and K with a common subgroup A.

2 HNN extensions

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with stable letters t1, . . . , tk and an isomorphism ϕi : Ai → Bi

for subgroups Ai and Bi of H.

H,K : vertex groups or base groups,
A,A1, . . . ,Ak : edge groups or associated subgroups.
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Examples

Free products G ∗ H

Baumslag-Solitar groups BSp,q =
〈
a, t

∣∣ tapt−1 = aq
〉

Baumslag’s group (aka Baumslag-Gersten group)

BG1,2 =
〈
a, b

∣∣ (bab−1)a(bab−1)−1 = a2
〉

=
〈
BS1,2, b

∣∣ bab−1 = t
〉

Semidirect products
H o Fk =

〈
H, t1, . . . , tk

∣∣ tiht−1
i = ϕi (h), h ∈ H, i = 1, . . . , k

〉
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Schreier graphs

Schreier graph Γ = Γ(G ,P,Σ) of G with respect to a subgroup P
and set of generators Σ ⊆ G :

Vertices: V (Γ) = P\G = {Pg | g ∈ G } = right cosets.

Edges: E (Γ) = P\G × Σ: Arcs are drawn as

Pg
a−→ Pga.

|Σ|-regular directed graph.

If Σ = Σ−1, then Γ(G ,P,Σ) is an undirected graph thanks to
the involution (Pg , a) = (Pga−1, a−1).

Cayley graph of G is Γ(G , {1} ,Σ).

1-to-1 correspondence of words in Σ∗ and paths starting at P.
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Examples

Every 2d-regular graph is a Schreier graph (Gross 1977 for
finite graphs, de la Harpe 2000 in general).

Schreier graph Γ(〈a〉 ∗ 〈b〉 , 〈a〉 ,
{
a, b, a, b

}
)

〈a〉

〈a〉b

〈a〉b−1

1 a

b

a−1

b−1
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Examples

The Schreier graph Γ(BS1,2, 〈a〉 , { a, a, t, t })

〈a〉 〈a〉t 〈a〉tt〈a〉 t〈a〉t t · · ·

· · · · · ·

· · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

〈a〉 〈a〉t 〈a〉tt〈a〉 t〈a〉t t

Schreier graph Γ(H o Fk ,H,Σ) = Cayley graph Γ(Fk , { 1 } ,Σ)
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Examples

The Schreier graph Γ(BS2,2, 〈a〉 , { a, a, t, t })
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Notation

Γ = (V ,E ) locally finite undirected graph.

d(u, v) = distance from u to v .

Γ satisfies the Gromov condition if there exists a map
f : V → V such that

supv∈V d(f (v), v) <∞ and∣∣f −1(v)
∣∣ ≥ 2 for all v ∈ V .

Γ satisfies the doubling condition if there exists some k ∈ N
such that for every finite U ⊆ V∣∣∣{ v ∈ V

∣∣∣ d(v ,U) ≤ k
}∣∣∣ ≥ 2 |U| .

A random walk on a (directed) graph starts at some vertex,
chooses an outgoing edge uniformly at random and goes to
the target vertex, then it chooses the next edge. . .

If Γ is d-regular.

p(n)(u, v) =
number of paths of length n from u to v

dn
.
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Amenability

Theorem (Kesten 1959, Gerl 1988, Gromov 1993,...)

Let Γ = (V ,E ) be a d-regular undirected graph. The following
statements are equivalent and define amenability:

(1) Γ satisfies the Gromov condition, i. e., there exists a map
f : V → V such that supv∈V d(f (v), v) <∞ and∣∣f −1(v)

∣∣ ≥ 2 for all v ∈ V .

(2) Γ satisfies the doubling condition: there exists some k ∈ N
such that for every finite U ⊆ V we have∣∣∣{ v ∈ V

∣∣∣ d(v ,U) ≤ k
}∣∣∣ ≥ 2 |U| .

(3) The random walk on Γ has exponentially decreasing return
probability.
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Examples

The Cayley graph of the free group F{a,b} is non-amenable:

1 a

b

a−1

b−1
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Examples

Amenability of locally finite graphs is not a quasi-isometry
invariant!!!

0 1 3 7 15 31

· · ·

The graph above satisfies the Gromov condition, but it is
quasi-isometric to an amenable graph:

· · ·

But: for d-regular graphs it is a quasi-isometry invariant.
 invariant under change of generating set
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Characterization of Schreier Graphs

Theorem (Diekert, Miasnikov, W. 2015)

Let G = H ?A K with [H : A] ≥ [K : A] ≥ 2 and P ∈ {H,K} and
let Σ = Σ−1 generate G.
Then the Schreier graph Γ(G ,P,Σ) is non-amenable iff
[H : A] ≥ 3.

Theorem (Diekert, Miasnikov, W. 2015)

Let G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

be an HNN extension
and let Σ = Σ−1 generate G.
The Schreier graph Γ(G ,H,Σ) is non-amenable iff both
[H : A] ≥ 2 and [H : ϕ(A)] ≥ 2.
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Examples

Example

Let BSp,q =
〈
a, t

∣∣ tapt−1 = aq
〉

be the Baumslag-Solitar group
with 1 ≤ p ≤ q. Then the Schreier graph
Γ(BSp,q, 〈a〉 , {a, a, t, t}) is non-amenable iff p 6= 1.

· · ·

· · · · · ·

· · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

Example

The Schreier graph Γ(BG1,2,BS1,2,
{
a, a, b, b

}
) is non-amenable.

Recall: BG1,2 =
〈
BS1,2, b

∣∣ bab−1 = t
〉
.
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Examples

Example

The Schreier graph Γ(H o Fk ,H,Σ) is non-amenable iff k ≥ 2.

If k = 1:

H o Fk =
〈
H, t

∣∣ tht−1 = ϕ(h) for h ∈ H
〉

and [H : H] = [H : ϕ(H)] = 1.

If k ≥ 2:

H o Fk =
〈
G , tk

∣∣ tkatk−1 = ϕk(a) for a ∈ Ak

〉
for G =

〈
H, t1, . . . , tk−1

∣∣ tiati−1 = ϕi (a) for a ∈ Ai

〉
and [G : Ak ] = [G : ϕ(Ak)] =∞.

14



Examples

Example

The Schreier graph Γ(H o Fk ,H,Σ) is non-amenable iff k ≥ 2.

If k = 1:

H o Fk =
〈
H, t

∣∣ tht−1 = ϕ(h) for h ∈ H
〉

and [H : H] = [H : ϕ(H)] = 1.

If k ≥ 2:

H o Fk =
〈
G , tk

∣∣ tkatk−1 = ϕk(a) for a ∈ Ak

〉
for G =

〈
H, t1, . . . , tk−1

∣∣ tiati−1 = ϕi (a) for a ∈ Ai

〉
and [G : Ak ] = [G : ϕ(Ak)] =∞.

14



Proof for amalgamated products

Theorem (Diekert, Miasnikov, W. 2015)

Let G = H ?A K with [H : A] ≥ [K : A] ≥ 2 and P ∈ {H,K} and
let Σ = Σ−1 generate G.
Then the Schreier graph Γ(G ,P,Σ) is non-amenable iff
[H : A] ≥ 3.

Proof

For the only-if direction we assume [H : A] = [K : A] = 2.
 A is normal in G and G/A = Z/2Z ∗ Z/2Z = D∞.

Assume Σ ⊆ A ∪ {h, k} for some h ∈ H, k ∈ K . Then the Schreier
graph Γ(G ,H,Σ) is amenable:

k h k h k
h

· · ·

15



Proof for amalgamated products

Theorem (Diekert, Miasnikov, W. 2015)

Let G = H ?A K with [H : A] ≥ [K : A] ≥ 2 and P ∈ {H,K} and
let Σ = Σ−1 generate G.
Then the Schreier graph Γ(G ,P,Σ) is non-amenable iff
[H : A] ≥ 3.

Proof

For the only-if direction we assume [H : A] = [K : A] = 2.
 A is normal in G and G/A = Z/2Z ∗ Z/2Z = D∞.

Assume Σ ⊆ A ∪ {h, k} for some h ∈ H, k ∈ K . Then the Schreier
graph Γ(G ,H,Σ) is amenable:

k h k h k
h

· · ·

15



Proof for amalgamated products

Lemma (Normal forms for amalgamated products)

Fix transversals C ⊆ H and D ⊆ K for cosets of A in H and K
with 1 ∈ C ∩ D s. t. the decompositions

H = AC , K = AD

are unique.

Every group element g ∈ G = H ?A K can be uniquely written as

g =G x0 · · · xk

for some k ∈ N, x0 ∈ H ∪ K such that for all 1 ≤ i ≤ k we have

xi ∈ C ∪ D \ { 1 } ;

xi−1 ∈ H ⇐⇒ xi ∈ K .

16



Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:

Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .

17



Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:
Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .

17



Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:
Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .

17



Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:
Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .

17



Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:
Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .

17



Action on the Bass-Serre tree

A fgogog G acts on its Bass-Serre tree.

Definition

The elliptic elements of G fix a vertex of the tree.
The hyperbolic elements act without fixed points.

Consequence

{ elliptic elements } =
⋃

g∈G g(H ∪ K )g−1, or

{ elliptic elements } =
⋃

g∈G gHg−1.

{ Hyperbolic elements } = G \ { elliptic elements }.

18



Action on the Bass-Serre tree

A fgogog G acts on its Bass-Serre tree.

Definition

The elliptic elements of G fix a vertex of the tree.
The hyperbolic elements act without fixed points.

Consequence

{ elliptic elements } =
⋃

g∈G g(H ∪ K )g−1, or

{ elliptic elements } =
⋃

g∈G gHg−1.

{ Hyperbolic elements } = G \ { elliptic elements }.

18



Hyperbolic elements form a strongly generic subset if . . .

S ⊆ Σ∗ is called generic if
|Σn \ S |
|Σn|

→ 0 for n→∞.

S ⊆ Σ∗ is strongly generic if there is some ε > 0 such that

|Σn \ S |
|Σn|

≤ 2−εn.

A random word defines a random walk in the Schreier graph.

Theorem (Diekert, Miasnikov, W. 2015)

Let G = H ?A K be an amalgamated product such that
[H : A] ≥ 3 and [K : A] ≥ 2, or let

G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

be an HNN extension
with [H : A] ≥ 2 and [H : ϕ(A)] ≥ 2.

Then the set of words representing hyperbolic elements in G is
strongly generic in Σ∗.
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Proof

Under the hypotheses of the characterization theorems:

{w ∈ Σ∗ | w ∈ H ∪ K } is strongly generic.

{w ∈ Σ∗ | w ∈ H } is strongly generic.

Assume Σ ⊆ H ∪ K (resp. Σ ⊆ H ∪ {t, t}).

Then w ∈ Σ∗ represents an elliptic group element iff there is some
cyclic permutation w ′ = w2w1 of w = w1w2 with w ′ ∈ H ∪ K .

There are only |w | cyclic permutations:

|{w ∈ Σn | w elliptic }| ≤ n · |{w ∈ Σn | w ∈ H ∪ K }|

≤ n · 2εn ≤ 2ε
′n for n large enough.

 hyperbolic elements form a strongly generic set.
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Part II

The conjugacy problem in HNN
extensions and amalgamated

products

21



Dehn’s fundamental problems

Let G be generated by a finite set Σ with Σ = Σ−1, i. e., there is
an epimorphism

η : Σ∗ → G .

Write a for a−1 ∈ Σ.

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?

Conjugacy problem: Given v ,w ∈ Σ∗. Question: v ∼ w?

(∃ z ∈ G such that zvz−1 = w?)
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Examples

Baumslag-Solitar groups BSp,q: Conjugacy problem is
decidable in Logspace (W. 2015).

Baumslag’s group BG1,2 =
〈
BS1,2, b

∣∣ bab−1 = t
〉

Word problem decidable in polynomial time (Miasnikov,
Ushakov, Won 2006).
Conjugacy problem decidable in non-elementary time (Beese
2012).

Semidirect products
HoFk =

〈
H, t1, . . . , tk

∣∣ tiht−1
i = ϕi (h), h ∈ H, i = 1, . . . , k

〉
Theorem (Miller 1968)

There is a group Fn o Fk with undecidable conjugacy problem.

Theorem (Bogopolski, Martino, Ventura 2010)

There is a group Z4 o Fk with undecidable conjugacy problem.
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Strongly generic algorithms

S ⊆ Σ∗ is called generic if
|Σn \ S |
|Σn|

→ 0 for n→∞.

S ⊆ Σ∗ is strongly generic if there is some ε > 0 such that

|Σn \ S |
|Σn|

≤ 2−εn.

A problem P is (strongly) generically decidable (in polynomial
time) if there is a partial algorithm A and a strongly generic set S
such that

1 A solves P (in polynomial time) on all inputs from S .

2 A may refuse to give an answer or it might not terminate, but
only on inputs outside S .

3 If A gives an answer, then the answer must be correct.

The algorithm A never fools and gives an answer (in polynomial
time) on “almost all” random inputs.
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Strongly generic algorithms

“Trivial” generic algorithm for HNN extensions (Kapovich,
Miasnikov, Schupp, Spilrain 2003):

G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

Compute the image under ϕ : G → 〈t〉 = G/〈〈H〉〉 (count the
number of letters t).

if ϕ(v) 6= ϕ(w), then v and w are not conjugate,

otherwise, nothing is known.

Generic, but not not strongly generic.

Never gives a positive answer.

Theorem (Borovik, Miasnikov, Remeslennikov 2005)

The conjugacy problem of Miller’s group Fn o Fk is strongly
generically decidable in polynomial time.
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Solving the conjugacy problem of hyperbolic elements

Lemma (Collins’ Lemma)

Let G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

and let v ,w ∈ Σ∗ be

cyclically Britton-reduced, (no factor tat−1 or t−1bt in vv and
ww for any a ∈ A or b ∈ ϕ(A)),

representing hyperbolic group elements.

Then

v ∼ w ⇐⇒ there is a cyclic permutation w2w1 of w = w1w2

and a ∈ A such that v = aw2w1a
−1.
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Groups with more than one end

Observation

Let

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with Ai finite for all i . If the the word problem of G is decidable,
then the conjugacy problem of G is decidable for hyperbolic
elements.

Proof.

Input: v ,w

Apply Britton reductions cyclically.

Simply test for all a ∈
⋃

i Ai and all cyclic permutations w2w1

of w whether v = aw2w1a
−1.
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Groups with more than one end

Corollary

Let G be a finitely generated group with more than one end. If the
word problem of G is decidable in polynomial time, then the
conjugacy problem of G is decidable in polynomial time in a
strongly generic setting.

Proof.

By Stallings’ Structure Theorem, G splits over a finite subgroup.
There are two cases:

G is virtually cyclic  conjugacy problem in linear time.

Otherwise, hyperbolic elements form a strongly generic set.
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HNN extenstions of free abelian groups

Theorem

Let

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with H finitely generated free abelian. Then for hyperbolic
elements, the conjugacy problem of G is decidable in polynomial
time.

The proof is based on:

Theorem (Frumkin 1977, von zur Gathen, Sieveking 1978)

Given a system of linear equation with integer coefficients, it can
be determined in polynomial time whether it has an integral
solution and, if so, the solution can be computed in polynomial
time.
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HNN extenstions of free abelian groups

Proof

Choose bases for H and for the Ai . This defines integer matrices

M
(1)
i ,M

(−1)
i for the inclusions

id : Ai → H, ϕi : Ai → H.

Subgroup membership problem for Ai (resp. ϕ(Ai )) reduces to
a system of linear integer equations.

Britton reductions tigt
−1
i → ϕi (g) in polynomial time.

Compute cyclically Britton-reduced words in polynomial time.
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HNN extenstions of free abelian groups

Proof (Cont.)

Apply Collins’ Lemma:

Check all cyclic permutations.

Let v = tε1
i1
g1 · · · tεnin gn, w = tε1

i1
h1 · · · tεnin hn

be cyclically reduced with gi , hi ∈ H. Then there is some
a ∈

⋃
i Ai with ava−1 =G w iff the system of equations

M
(εj )
ij

xj −M
(εj )
ij+1

xj+1 + gj = hj for 1 ≤ j ≤ n,

has an integral solution x1, . . . , xn.
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HNN extenstions of free abelian groups

Corollary

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with H finitely generated free abelian. The conjugacy problem of
G is decidable in polynomial time on a strongly generic set.

Proof.

Two cases:
G =

〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ H
〉

:
for g , h ∈ H (i. e., g , h elliptic):

g ∼ h iff ∃i ∈ N with g = ϕi (h) or h = ϕi (g)

 orbit problem for rational matrices. Dedicable in
polynomial time (Kannan, Lipton 1986).
If ϕ(H) = H, see also Cavallo, Kahrobaei 2014.

Otherwise, hyperbolic elements form a strongly generic set.

Application

The conjugacy problem of the Z4 o Fn group with undecidable
conjugacy problem (Bogopolski, Martino, Ventura 2010) is
strongly generically in polynomial time.
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Baumslag Group

Theorem (Diekert, Miasnikov, W. 2014)

The conjugacy problem of BG1,2 is decidable in polynomial time
for hyperbolic elements.

Theorem (Diekert, Miasnikov, W. 2014)

Conjugacy in the Baumslag group BG1,2 can be solved in
polynomial time in a strongly generic setting by some algorithm
which always stops and which has non-elementary average time
complexity.

Conjecture

The conjugacy problem of BG1,2 is non-elementary on average.

Hence, there are natural problems / algorithms where average case
complexity is meaningless! Because average case is not better than
worst case and the worst case is useless.
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Difficulty of the word problem in BG1,2

τ = tower function: τ(0) = 0, τ(n + 1) = 2τ(n).

Solving the word problem using Britton reductions:

bakb−1 → tk b−1tkb → ak

leads to non-elementary blow-up.

Define words wn inductively such
that wn = tτ(n) in BG1,2 for n ≥ 0. More precisely, w0 := empty
word. Then w0 = 1 in BG1,2 and:

wn+1 := b · wn · a · w−1
n · b−1

= b · tτ(n) · a · t−τ(n) · b−1

= b · aτ(n+1) · b−1

= tτ(n+1)

|wn| ∈ 2Θ(n), but wn is a huge compression for the number τ(n).
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HNN extenstions of free abelian groups

For the word problem: use power circuits for high compression.

Algorithm for conjugacy for hyperbolic elements

Reduce words cyclically using the algorithm by Miasnikov,
Ushakov, Won.

Check all cyclic permutations.

For each cyclic permutation, compute a “cyclic” normal form.

Use the word problem to check normal forms for equality.

Problem for elliptic elements:

ar tm ∼ astq ⇐⇒ m = q and ∃k ∈ N : 0 ≤ k < m such that

r · 2k ≡ s mod 2m − 1

r ,m, s, q extremely huge numbers given by power circuits.
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Computer experiments
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Portion of reduced words w ∈ H over the alphabet {a, b, a, b}
with |w |b + |w | b = 2n, sampling 11 · 109 words.
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Summary

Characterization of amenability of Schreier graphs of HNN
extensions and amalgamated products.

Strongly generic polynomial time algorithms for conjugacy in
BG1,2 and HNN extensions of f.g. free abelian groups.
Strongly generic reduction from conjugacy to the word
problem in more-than-one-ended groups.

Open questions:

Refinement of generic complexity for conjugacy.
Other groups with easy conjugacy problem for hyperbolic
elements (e.g.

〈
x1, x2, x3, x4

∣∣ xixi−1xi = x2
i−1

〉
).

more precise complexity bounds. Conjecture: algorithms for
conjugacy in BG1,2 and HNN extensions of f.g. free abelian
groups is efficiently parallelizable.
Explicit bounds for strongly generic sets.

Thank you!
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