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The word problem

Let G be a group generated by a finite set ¥ = ¥~! C G.

» Word problem (WP): Given w € £*.
Question: Is w =1 in G?

Is  bblaablbalal=1inF(a,b) ? J

» Compressed word problem: Given a straight-line program G which
produces a word w € ¥,
Question: Is w =1 in G?

» Power word problem (POWERWP):
Given p1,...,px € X* and xq1,...,xx € Z.
Question: p* - pik =1in G?

Is b123(b 3 3)12337246 b7123(b 3 )71233123 -1 ? J
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Why is the power word problem interesting?

» straightforward way of compression

Markus Lohrey, Armin WeiB Overview 3/13



Why is the power word problem interesting?

» straightforward way of compression

» natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
|

27 ones

Markus Lohrey, Armin WeiB Overview 3/13



Why is the power word problem interesting?

» straightforward way of compression

» natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
|

27 ones
» in nilpotent groups, every element can be expressed by a power
word of logarithmic length

Markus Lohrey, Armin WeiB Overview



Why is the power word problem interesting?

» straightforward way of compression

» natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
|

27 ones
» in nilpotent groups, every element can be expressed by a power
word of logarithmic length
» binary encoded matrices in SL(2,Z) yield power words over the
generators (Gurevich, Schupp 2007)

Markus Lohrey, Armin WeiB Overview



Why is the power word problem interesting?

» straightforward way of compression

» natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
|

27 ones
» in nilpotent groups, every element can be expressed by a power
word of logarithmic length

» binary encoded matrices in SL(2,Z) yield power words over the
generators (Gurevich, Schupp 2007)

—499 5000
—50 501

Markus Lohrey, Armin WeiB Overview
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Why is the power word problem interesting?

» straightforward way of compression

» natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
27 ones
» in nilpotent groups, every element can be expressed by a power
word of logarithmic length

» binary encoded matrices in SL(2,Z) yield power words over the
generators (Gurevich, Schupp 2007)

—499 5000\ (1 1\ /1 o\P/1 1\ "
-50 501 )  \0 1 11 0 1
» tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015)
(Given p1,...,px, w € X*, Ixq,...,xk € Nwith pi*--- p* = w?)
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Why is the power word problem interesting?

>
| 4

>

| 2

straightforward way of compression

natural for abelian groups: we write 27 instead of 1 +1+4--- 4+ 1
27 ones

in nilpotent groups, every element can be expressed by a power

word of logarithmic length

binary encoded matrices in SL(2,Z) yield power words over the

generators (Gurevich, Schupp 2007)

—499 5000\ (1 1\ /1 o\P/1 1\ "

-50 501 )  \0 1 11 0 1
tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015)
(Given p1,...,px, w € X*, Ixq,...,xk € Nwith pi*--- p* = w?)

better understanding of the compressed word problem:

> lower bounds
» better upper bounds in the special case
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Word problems of free groups

F(a,b) ={a,b,a,b}*/{aa=2a= bb=bb=1}
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Word problems of free groups

F(a,b) ={a,b,a,b}*/{aa=2a= bb=bb=1}

» The word problem of free groups is in LOGSPACE (Lipton,
Zalcstein, 1977).
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F(a,b) ={a,b,a,b}*/{aa=2a= bb=bb=1}
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Zalcstein, 1977).

» WP(F) is NC'-hard for k > 2 (Robinson, 1993).
» COMPRESSEDWP(Fy) is P-complete for k > 2 (Lohrey, 2004).

The power word problem for free groups is in ACO(WP(F)).

ACY = constant-depth, polynomial-size Boolean circuit
ACO(L) = AC® + oracle gates for L
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Word problems of free groups

F(a,b) ={a,b,a,b}*/{aa=2a= bb=bb=1}

» The word problem of free groups is in LOGSPACE (Lipton,
Zalcstein, 1977).

» WP(F) is NC'-hard for k > 2 (Robinson, 1993).

» COMPRESSEDWP(Fy) is P-complete for k > 2 (Lohrey, 2004).

The power word problem for free groups is in ACO(WP(F)).

ACY = constant-depth, polynomial-size Boolean circuit
ACO(L) = AC® + oracle gates for L

The proof consists of three steps:
» Preprocessing
» Make exponents small
» Solve regular word problem
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(a b)lOOOa b—lOO blOOa b—lOO b100§ 3 (a b)—lOOO
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(a b)lOOOa 3 b—lOO blOOE 3 (a b)—lOOO
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(2 b)10%, 257181005 5 (5 ) 1000
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(a b)lOOOa 3 33 (a b)—lOOO
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.
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Markus Lohrey, Armin WeiB Power word problem in free groups



Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(a b)lOOO (a b)—lOOO
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

(abyloee (270
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

v

Example 2

b123(b 3 3)1233_246 b_123(55 )1233123
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

v

Example 2

b123(b 3 3)1233_24613_123(55 )1233123 ?é 1
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

Example 2

b123(b 3 3)1233_24613_123(55 )1233123 ?é 1

Example 3

(a 3 )500 (5 )999 3
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

Example 2

b123(b 3 3)1233_24613_123(55 )1233123 ?é 1

Example 3

(33)500 (5)9995 -1
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—1.

Example 1

Example 2

\
%

b123(b 3 3)1233_2461)_123(55 )1233123 ?é 1

Example 3

Example 4
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })
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Preprocessing

Q C X T is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Q= {a, b, ab, ab, aab, aaB,...}
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Preprocessing

Q C X T is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words.

Power word problem in free groups

Markus Lohrey, Armin WeiB



Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.

Power word problem in free groups

Markus Lohrey, Armin WeiB



Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.
» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-

Power word problem in free groups

Markus Lohrey, Armin WeiB



Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.

» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-
~> also p and q.
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.

» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-
~> also p and q.

> By (2), |p| = |ql.

Power word problem in free groups
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma
Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

Proof.
» By (1), v=w ! as words. ~» v has periods |p| and |q|.

» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-
~> also p and q.
> By (2). |pl = gl

» By (3), since p is a factor of w !, we get p = q. O
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Preprocessing

The first aim is to rewrite an input word gJ" - - - g3" in the form

w = sop;isi- - pasn with p; € Q and s; freely reduced. (1)
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Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).
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Preprocessing

The first aim is to rewrite an input word gJ" - - - g3" in the form

w = sop;isi- - pasn with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

> Freely reduce the g; (in AC°(WP(F))), W., 2016).
» Make each g; cyclically reduced.
» Make each g; primitive.

> Make g; lex. minimal in { uv ‘ vu = g; or vu = q,-_1 3
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Preprocessing

The first aim is to rewrite an input word gJ" - - - g3" in the form

w = sop;isi- - pasn with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

> Freely reduce the g; (in AC°(WP(F))), W., 2016).

» Make each g; cyclically reduced.

» Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = gj or vu = q,-_1 }

This yields SopyS1 - - - PR sn
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Preprocessing

The first aim is to rewrite an input word gJ" - - - g3" in the form

w = sop;isi- - pasn with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

> Freely reduce the g; (in AC°(WP(F))), W., 2016).

» Make each g; cyclically reduced.

» Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = gj or vu = q,-_1 }
This yields SopyS1 - - - PR sn

» Freely reduce the s;.
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;.
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Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;.

Idea:

» Decrease all exponents of p; simultaneously.
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;.

Idea:
» Decrease all exponents of p; simultaneously.

But: cannot delete them entirely:

al00ph 57100, £ 1 but 2% 2% =1
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.
We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;.

Idea:
» Decrease all exponents of p; simultaneously.

But: cannot delete them entirely:
al00ph 57100, £ 1 but 2% 2% =1
Nor down to 1:

al®Eba)ta % £ 1but al(aba)tath =1

Markus Lohrey, Armin WeiB Power word problem in free groups



Make exponents small

For p € Q rite w = ugp” u; - - - PP u, such that no u; contains p*.
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Make exponents small

For p € Q rite w = ugp” u; - - - PP u, such that no u; contains p*.
Co
CS /\

5
6
cr

Co

1 4
Cs 4

1\ \
1 \/ /

Y. /

. \Vi

Markus Lohrey, Armin WeiB Power word problem in free groups



Make exponents small

For p € Q rite w = ugp” u; - - - PP u, such that no u; contains p*.
o
CS /\

v\ }d7
cr

Co

1 4
Cs 4

= Ng—
Y o

Y /

\/ Y
a
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Make exponents small

For p € Q rite w = ugp” u; - - - PP u, such that no u; contains p*.
o
CS /\

v\ }d7
cr

Co

1 4
Cs 4

= Ng—
Y o

Y /

\/ Y
a

Define S(w) = uop™ u1 - - - p™ um where z; = y; — sign(y;) - Z dj
JEG
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Make exponents small

Proposition

w=fl < S(W) =r 1.
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Make exponents small

Proposition

w=fl < S(W) =r 1.

Proof of the main theorem.

> Preprocessing gives a “nice word” w = sppy’sy - - - pinsp.

» For all p € Q which appear in w, compute S(w) in parallel
(iterated addition ~~ in TC?).

» Yields a word of polynomial length ~~ ordinary word problem.
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Further results on the power word problem

Let G be f.g. and H < G of finite index. Then
PoweRWP(G) <NC' PowERWP(H).
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Further results on the power word problem

Let G be f.g. and H < G of finite index. Then
PoweRWP(G) <NC' PowERWP(H).

The power word problem of f.g. virtually free groups is in LOGSPACE. \
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Further results on the power word problem

Let G be f.g. and H < G of finite index. Then
PoweRWP(G) <NC' PowERWP(H).

The power word problem of f.g. virtually free groups is in LOGSPACE. \

If G is f.g. nilpotent, then POWERWP(G) is in TC?.
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Further results on the power word problem

Let G be f.g. and H < G of finite index. Then
PoweRWP(G) <NC' PowerRWP(H).

The power word problem of f.g. virtually free groups is in LOGSPACE.

If G is f.g. nilpotent, then POWERWP(G) is in TC?.

The power word problem of the Grigorchuk group is in LOGSPACE.
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The power word problem in wreath products

For every f.g. abelian group G, POWERWP (G Z) is in TCO.
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The power word problem in wreath products

For every f.g. abelian group G, POWERWP (G Z) is in TCO.

Let G be either
» finite non-solvable
» f.g. free of rank > 2.
Then POWERWP(G 1 Z) is coNP-complete.
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The power word problem in wreath products

For every f.g. abelian group G, POWERWP (G Z) is in TCO.

Let G be either

» finite non-solvable
» f.g. free of rank > 2.
Then POWERWP(G 1 Z) is coNP-complete.

For comparison:
» WP(GZ) is in LOGSPACE (resp. NC!)

» COMPRESSEDWP(GZ) is PSPACE-complete (Lohrey 2019,
unpublished)
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The power word problem in wreath products

For every f.g. abelian group G, POWERWP (G Z) is in TCO.

Let G be either
» finite non-solvable
» f.g. free of rank > 2.
Then POWERWP(G 1 Z) is coNP-complete.

Proof idea.
Show CNF-UNSAT < POweErWP(GZ):
» Every formula can be “simulated” in G (Barrington 89)

> Test all valuations “in parallel” in G%) < F,17Z
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Open Questions

» What if we allow nested exponents:
<bl35 ((b 383)133—2619—13) 12>16 ((55)13313)20

> Conjecture: for constant nesting depth in ACY(WP(F,)).
» Not clear what happens for unbounded nesting depth:
...is it P-complete? ...or in AC(WP(F,))?
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Open Questions

» What if we allow nested exponents:
(bls5 ((b 383)133—26b—13) 12)16 ((55)13313)20

> Conjecture: for constant nesting depth in ACY(WP(F,)).
» Not clear what happens for unbounded nesting depth:
_..is it P-complete? ...or in AC°(WP(F))?
» Complexity of POWERWP in other groups:
» (G1Z) for G non-abelian, but not free nor finite, non-solvable (e. g.
G nilpotent)?
» hyperbolic groups?
> RAAGs (= graph groups)?
» HNN extensions and amalgamated products over finite subgroups?
» Baumslag-Solitar groups?
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Open Questions

» What if we allow nested exponents:
(bls5 ((b 383)133—26b—13) 12)16 ((55)13313)20

> Conjecture: for constant nesting depth in ACY(WP(F,)).
» Not clear what happens for unbounded nesting depth:
_..is it P-complete? ...or in AC°(WP(F))?

» Complexity of POWERWP in other groups:

» (G1Z) for G non-abelian, but not free nor finite, non-solvable (e. g.
G nilpotent)?
hyperbolic groups?
RAAGs (= graph groups)?
HNN extensions and amalgamated products over finite subgroups?
Baumslag-Solitar groups?

Thank you!

vvyvyy
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