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Dehn's algorithmic problems

Let G be a group generated by a finite set ¥ = ¥~! C G.

Given: wexr®
Word problem: . .
ord probiem Question: Is w =1 in G?
. ~ Given: VWi, ..., Wy € X,
Subgroup membership problem: Question: v € (wy, ..., wp)?
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Dehn's algorithmic problems

Let G be a group generated by a finite set ¥ = ¥~! C G.

Given: wexr®
Word problem: . .
ord probiem Question: Isw=1in G?
. ~ Given: VWi, ..., Wy € X,
Subgroup membership problem: Question: v € (wy, ..., wp)?

Theorem (Robinson, 1993)
The word problem of nilpotent groups is in TCC.
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Dehn's algorithmic problems

Let G be a group generated by a finite set ¥ = ¥~! C G.

Given: wex®

Word problem: Question: Isw =1 in G?

Given: VWi, ..., Wy € X,

Subgroup membership problem: Question: v € (wi, ..., w,)?

Theorem (Robinson, 1993)

The word problem of nilpotent groups is in TCC.

Theorem (Macdonald, Myasnikov, Nikolaev, Vassileva, 2015)

The subgroup membership problem of nilpotent groups is in LOGSPACE.
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Circuit Complexity

TCY = solved by constant depth, polynomial size circuits with unbounded
fan-in =, A, V, and majority gates.

Maj(w) =1 < |w|; > |w], for w € {0,1}"
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Circuit Complexity

TCY = solved by constant depth, polynomial size circuits with unbounded
fan-in =, A, V, and majority gates.

Maj(w) =1 < |w|; > |w], for w € {0,1}"

AC® C TC® C NC' C LOGSPACEC NC*C ---CNCCP
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Circuit Complexity

TCY = solved by constant depth, polynomial size circuits with unbounded
fan-in =, A, V, and majority gates.

Maj(w) =1 < |w|; > |w], for w € {0,1}"

AC® C TC® C NC' C LOGSPACEC NC*C ---CNCCP

Arithmetic problems in TCC:
o lterated Addition (input: n-bit numbers ry, ..., r,, compute Y 7, r;)
@ |terated Multiplication
@ Integer Division (Hesse 2001)
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Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. |
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Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. |

Encode —1 by 0 and 1 by 1.
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Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. |

Encode —1 by 0 and 1 by 1. Let w € {0,1}7,

w represents 0 in Z <= |w|; = |w|,
<= Maj(w) A Maj(—w)
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Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. |

Encode —1 by 0 and 1 by 1. Let w € {0,1}7,

w represents 0 in Z <= |w|; = |w|,
<= Maj(w) A Maj(—w)
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Nilpotent groups

Definition

A group G is nilpotent of class c if
G:G1> G2>~~'GC> GC+1:{1}
where Gj11 =[G}, G] = <x‘1g_1xg for x € Gj,g € G>.
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Nilpotent groups

Definition
A group G is nilpotent of class c if
G:G1> G2>~~'GC> GC+1:{1}

where Gj11 =[G}, G] = <x‘1g_1xg for x € Gj,g € G>.

Examples:
@ abelian groups (nilpotent of class 1)
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Nilpotent groups

Definition
A group G is nilpotent of class c if
G:G1> G2>~~'GC> GC+1:{1}

where Gj11 =[G}, G] = <x‘1g_1xg for x € Gj,g € G>.

Examples:
@ abelian groups (nilpotent of class 1)

o finite p-groups
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Nilpotent groups

Definition
A group G is nilpotent of class c if
G:G1> G2>~~'GC> GC+1:{1}

where Gj11 =[G}, G] = <x‘1g_1xg for x € Gj,g € G>.

Examples:
@ abelian groups (nilpotent of class 1)
o finite p-groups
@ unitriangular matrices UT,(Z)
(upper triangular and diagonal entries 1)
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Nilpotent groups

Definition

A group G is nilpotent of class c if
G:G1> G2>~~'GC> GC+1:{1}
where Gj11 =[G}, G] = <x‘1g_1xg for x € Gj,g € G>.

Examples:
@ abelian groups (nilpotent of class 1)
o finite p-groups
@ unitriangular matrices UT,(Z)
(upper triangular and diagonal entries 1)
o free nilpotent groups
Fk,c = <a1, - ‘ [Xl, - 7Xc+1] =1 for xq, ... , Xe+1 € Fk,c>
where ([x1, ..., Xct1] = [[x1, - xc]s Xex1])
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example

F272 = <21,82 | [[ny]vz] =1 for X,y,Z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example

F272 = <21,82 | [[ny]vz] =1 for X,y,Z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{

e (a1, ap,[az, a1]) is a Mal'cev basis:

A. Myasnikov, A. Wei TCO circuits for algorithmic problems in nilpotent groups



Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example

F272 = <21,82 | [[ny]vz] =1 for X,y,Z € F2,2>
@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

d2d1d2d1 =
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example

F272 = <21,82 | [[ny]vz] =1 for X,y,Z € F2,2>
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

araiara; = arap|ap, a1]acar
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

arajara; = arapapai|a. a1

A. Myasnikov, A. Wei TCO circuits for algorithmic problems in nilpotent groups



Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

araiara; = ajaparailap, a1)
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

2
araiara; = ayasaiap, a1}
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

aparapa; = aya1a3|az, a1’ [az, a1]
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

— X1
§=4ay adm

with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
Fa2 = (an, a2 | [[x,y],z] =1 for x,y,z € F2,2>

@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{
e (a1, ap,[az, a1]) is a Mal'cev basis:

2.2 3
arajapa; = ajas[a, a1
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Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis (a1, ..., am).
@ Each g € G has a unique normal form

Xm

g:a)lq"'am
with (x1,...,xm) € Z™ and

ajaj = aja; mod <amax{ [ USTRRR am> .

Example
F272 = <21,82 | [[ny]vz] =1 for X,y,Z € F2,2>
@ (a1, ap) is not a Mal’cev basis since aya; cannot be written as a’fa{

e (a1, ap,[az, a1]) is a Mal'cev basis:
dmaiayar = aias|a, a1l

o Fpo = (a1, a2, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1) = UT3(Z)
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Mal'cev coordinates

The products of two elements can be written in the same way

Y R
aj ayT - a ayr = a apr
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Mal'cev coordinates

The products of two elements can be written in the same way

X1 X Y1 Ym _ Pl p
al ...anT.al ...a,TT_al ...am’"
The exponents p1,...,p, are functions of x1,...,xm and y1,...,¥m
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Mal'cev coordinates

The products of two elements and powers can be written in the same way

X1 X Y1 Ym __ 4P1 P
al ...anT.al ...a,TT_al ...amm
X1 Xm\Z __ g1 q
(a7’ --apgy)* =ay --ay.
The exponents pi,...,pm (resp. qi,...,qm) are functions of x1, ..., Xm
and y1,...,¥m (resp. x1,...,xm and z).
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Mal'cev coordinates

The products of two elements and powers can be written in the same way

X1 X Y1 Ym __ 4P1 P
al ...an’;’.al ...a,TT_al ...amm
X1 Xm\Zz __ g1 q
(a7 --apy)* =aj ---ay.
The exponents p1,...,pm (resp. qi,...,qm) are functions of x1, ..., Xm
and y1,...,¥m (resp. x1,...,xm and z).

P1(X1, -y Xmy Y15 -y Ym) = X1+ 11
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Mal'cev coordinates

The products of two elements and powers can be written in the same way

x1 X YI . o¥m — Pl . P
ay rdm cay rady = a am
XU pm\Z g0 44
(a7 --apy)* =aj ---ay.
The exponents p1,...,pm (resp. qi,...,qm) are functions of x1, ..., Xm
and y1,...,¥m (resp. x1,...,xm and z).

P1(X1, -y Xmy Y15 -y Ym) = X1+ 11

Theorem (P. Hall, 1957)

If G is torsion-free, then

P1;---,Pm € Q[Xla"'7xmay1a"'7ym]7
qi,---,q9m € Q[Xl"'wxmaz]'
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Mal'cev coordinates

The products of two elements and powers can be written in the same way

X1 X Y1 Ym __ 4P1 P
al ...anT.al ...a,TT_al ...amm
X1 Xm\Zz __ g1 q
(a7 --apy)* =aj ---ay.
The exponents p1,...,pm (resp. qi,...,qm) are functions of x1, ..., Xm
and y1,...,¥m (resp. x1,...,xm and z).

Example

G = F2 = (a1, a2, a3 | [a2, a1] = a3, [a3, a1] =[a3, 2] = 1)

X1 X2 X3 Y1 .oY2 oy3 X1ty xetye x3tystyixe
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Mal'cev coordinates

The products of two elements and powers can be written in the same way

X1 X Y1 Ym __ 4P1 P
al ...anT.al ...a,TT_al ...amm
X1 Xm\Zz __ g1 q
(a7 --apy)* =aj ---ay.
The exponents p1,...,pm (resp. qi,...,qm) are functions of x1, ..., Xm
and y1,...,¥m (resp. x1,...,xm and z).

Example

G = F2 = (a1, a2, a3 | [a2, a1] = a3, [a3, a1] =[a3, 2] = 1)

X1 X2 X3 Y1 .oY2 oy3 X1ty xetye x3tystyixe

( X1 X2 X3)Z

z—1
2x1 gz 2a+(%7 P
dy dy 33 ds 33 .

:a].
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Groups as inputs

Nc,r = { r-generated nilpotent groups of class at most c }.
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Groups as inputs

Nc,r = { r-generated nilpotent groups of class at most c }.
Every G € N, is a quotient of the free nilpotent group Fc
G=F.,/N

for some normal subgroup N < F. ,.
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Groups as inputs

Nc,r = { r-generated nilpotent groups of class at most c }.

Every G € N, is a quotient of the free nilpotent group Fc
G = Fep/N

for some normal subgroup N < F. ,.

Represent G € N, by a (nice) generating set of N.

A. Myasnikov, A. WeiB
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Groups as inputs

Nc,r = { r-generated nilpotent groups of class at most c }.

Every G € N, is a quotient of the free nilpotent group Fc
G=Fe /N

for some normal subgroup N < F. ,.

Represent G € N, by a (nice) generating set of N.

If (a1,...,am) is a Mal'cev basis of Fc,, it is also a Mal'cev basis of G.
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Words with Binary Exponents

Usually: group elements represented as words
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Words with Binary Exponents

Usually: group elements represented as words

Let 2 generate G. A word with binary exponents is

@ a sequence wi,...,w, with w; € &
@ together with x1,...,x, with x; € Z encoded in binary.
It represents w=wyt e wpn
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Words with Binary Exponents

Usually: group elements represented as words

Let 2 generate G. A word with binary exponents is

@ a sequence wi,...,w, with w; € &
@ together with x1,...,x, with x; € Z encoded in binary.
It represents w=wyt e wpn

Write e Wegen Vet

instead of dy1---d1 d3dp---adpdijdididl.

1000 times 100 times
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Words with Binary Exponents

Usually: group elements represented as words

Let 2 generate G. A word with binary exponents is

@ a sequence wi,...,w, with w; € &
@ together with x1,...,x, with x; € Z encoded in binary.
It represents w=wyt e wpn

Write e Wegen Vet

instead of dy1---d1 d3dp---adpdijdididl.

1000 times 100 times

In Ne.r groups every word of length n can be written as a word with binary
exponents using O(log n) bits.
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Word Problem

Let c,r > 1 be fixed. Let (a1,...,am) be the standard Mal'cev basis of
Fc,r. The following problem is in TCO:

Input: G € Nc, and w = wy* - - w» (with binary exponents),

Y1

Find: y1,...,ym € Z (in binary) such that w = ay* - -- ayy.

A. Myasnikov, A. Wei3 TCO circuits for algorithmic problems in nilpotent groups
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Word Problem

Let c,r > 1 be fixed. Let (a1,...,am) be the standard Mal'cev basis of
Fc,r. The following problem is in TCO:

Input: G € Nc, and w = wy* - - w» (with binary exponents),

Y1

Find: y1,...,ym € Z (in binary) such that w = ay* - -- ayy.

For unary inputs and fixed G this is due to Robinson 1993.
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Word Problem

Let c,r > 1 be fixed. Let (a1,...,am) be the standard Mal'cev basis of
Fc,r. The following problem is in TCO:

Input: G € Nc, and w = wy* - - w» (with binary exponents),

Find: y1,...,ym € Z (in binary) such that w = ay* - -- ayy.

For unary inputs and fixed G this is due to Robinson 1993.

Let c¢,r > 1 be fixed. The uniform, binary word problem for groups in N¢ ,
is TCO-complete (input as in Theorem 1).
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Proof

G = F272 = <81, an, as ‘ [32, 81]283, [33,31]:[33,32]:1>

13,105 10 ,—20

W = a3aj~a, ajaza; a;
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;
Aim move a; to the left.
Substitution rules: aya) — aja a3 aya) — aja;
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.

Substitution rules: aya) — aja a3 aya) — aja;
w = as 3{3 a%o a? ar a%o af20
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.

- : XY Y X XY X Y Y X
Substitution rules: aa; — a;a a3 aza; — a,a3
w = as 3%3 a%o a? ar a%o 3;20
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.

- : XY Y X XY X Y Y X
Substitution rules: aa; — a;a a3 aza; — a,a3
w = as 3%3 a%o a? ar a%o 3;20

= a?
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.

Ut : X Y Y X XY X Y Y X
Substitution rules: aa; — a;a a3 aza; — a,a3
w = as 3{3 a%o a? ar a%o af20
8 -5 ~10
! =il 9
= a?
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Proof

Example
G = Fop = (a1,a, a3 | [a2, a1]=a3, [a3, a1] =[a3, 2] =1)

13,105 10 ,—20

W = a3aj~a, ajaza; a;

Aim move a; to the left.

Ut . X Y Y X XY X Y Y ox
Substitution rules: aya, — aja a, aza; — a,a3
w = as 3{3 a%o a? ar a%o af20
N “ N~ N_ “
aif af5 aflo
= a? as a%o a§50 a aglo

A. Myasnikov, A. Wei TCO circuits for algorithmic problems in nilpotent groups
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Proof

Example
G = Fp =(a1,a,a3 | [a2, ;1] = a3, [a3, a1] =[a3, 22] =1)
w = agai3aéoa§a2a%oal_2o
Aim move a; to the left.
Substitution rules: aya) — aja a3 aya) — aja;
w = as 3{3 a%o a? ar a%o af20
8 10 ,—50 ~10
=aj a3 ay az as a;
= 8 all 7%

A. Myasnikov, A. Wei TCO circuits for algorithmic problems in nilpotent groups



Proof

Example
G = Fp =(a1,a,a3 | [a2, ;1] = a3, [a3, a1] =[a3, 22] =1)
w = agai3aéoa§a2a%oal_2o
Aim move a; to the left.
T : x Y Y ox XY X Y Y X
Substitution rules: ayay — aja a3 aza; — a1 a3
w = as 3{3 a%o a? ar a%o af20
8 10 _—50 -10
=aj; a3 ay az a az
— a8 ol 33—59
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Proof

Example
G = Fp =(a1,a,a3 | [a2, ;1] = a3, [a3, a1] =[a3, 22] =1)
w = agai3aéoa§a2a%oal_2o
Aim move a; to the left.
s : x Y Y ox XY X Y Y X
Substitution rules: ayay — aja a3 aza; — a1 a3
w = as 3{3 a%o a? ar a%o af20
8 10 _—50 -10
=a; a3 ay ag ap ag
S a%l a3_59
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Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
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Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of Z:

Given a,a1,...,ap € Z,isa € (a1,...,an)?
With other words: are there xi, ..., x, € Z with

a=xya1 + -+ xpan?
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Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of Z:

Given a,a1,...,ap € Z,isa € (a1,...,an)?
With other words: are there xi, ..., x, € Z with

a=xya1 + -+ xpan?

Extended ged problem (ExTGCD)

On input of ai,...,a, € Z in binary, compute xi, ..., X, € Z such that

ged(a1,...,an) = x1a1 + -+ - + Xpan.
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Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of Z:

Given a,a1,...,ap € Z,isa € (a1,...,an)?
With other words: are there xi, ..., x, € Z with

a=xya1 + -+ xpan?

Extended ged problem (ExTGCD)

On input of ai,...,a, € Z in binary, compute xi, ..., X, € Z such that
ged(a1,...,an) = x1a1 + -+ - + Xpan.
~ a € (ai,...,an) iff gcd(a1, ..., an) | a.
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Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of Z:

Given a,a1,...,ap € Z,isa € (a1,...,an)?
With other words: are there xi, ..., x, € Z with

a=xya1 + -+ xpan?

Extended ged problem (ExTGCD)

On input of ai,...,a, € Z in binary, compute xi, ..., X, € Z such that
ged(a1,...,an) = x1a1 + -+ - + Xpan.
~ a € (ai,...,an) iff gcd(a1, ..., an) | a.

Proposition

EXTGCD with unary inputs and outputs is in TCC.
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Matrix reduction

Let (h1,..., h,) be generators of a subgroup H. We associate a matrix of

coordinates
Qi1 o Qi

Qpn1 - QGpm

where (a1, ... ajn) are the Mal’cev coordinates of h;.
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Matrix reduction

Let (h1,..., h,) be generators of a subgroup H. We associate a matrix of

coordinates
Qi1 o Qi

Qpn1 - QGpm

where (a1, ... ajn) are the Mal’cev coordinates of h;.

Modify matrix without changing the subgroup generated by its rows:
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Let (h1,..., h,) be generators of a subgroup H. We associate a matrix of
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Qi1 o Qi

Qpn1 - QGpm

where (a1, ... ajn) are the Mal’cev coordinates of h;.

Modify matrix without changing the subgroup generated by its rows:

e triangular shape (“Gaussian elimination”)
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Matrix reduction

Let (h1,..., h,) be generators of a subgroup H. We associate a matrix of

coordinates
Qi1 o Qi

Qpn1 - QGpm

where (a1, ... ajn) are the Mal’cev coordinates of h;.

Modify matrix without changing the subgroup generated by its rows:
e triangular shape (“Gaussian elimination”)
e HN(aj,aj+1,-..,am) is generated by rows with 0 in first i—1 columns.
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Matrix reduction

Let (h1,..., h,) be generators of a subgroup H. We associate a matrix of

coordinates
Qi1 o Qi

Qpn1 - QGpm

where (a1, ... ajn) are the Mal’cev coordinates of h;.

Modify matrix without changing the subgroup generated by its rows:
e triangular shape (“Gaussian elimination”)
e HN(aj,aj+1,-..,am) is generated by rows with 0 in first i—1 columns.

Matrix reduction is in TCP. \
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Subgroup membership problem

The subgroup membership problem is in TC® for nilpotent groups.

Proof.

Question is af! ... akm € H? Forward substitution:

(Xl,...,Xm)O *

EE S S
I
—~
=
i
X
S
~
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .

e Compute gcd(6,4) =2 =06 —4.
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
The associated matrix is A= ( 621 ) .

4 20

e Compute gcd(6,4) =2 =06 —4.

@ Add a new row corresponding to hs = hlhgl.
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
The associated matrix is A= ( 621 ) .

4 20

e Compute gcd(6,4) =2 =06 —4.

o Add a new row corresponding to hs = hihyt = a%a3as (afa3) L.
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .

e Compute gcd(6,4) =2 =06 —4.
2

@ Add a new row corresponding to hs = h1h2_1 = alaé.

N B O
ONDN
—_ o
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .
e Compute gcd(6,4) =2 =06 —4.
@ Add a new row corresponding to hs = h1h2_1 = a%a%.
o Replace hy by hj = h1h3> and hy by hy = hah3?
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .

e Compute gcd(6,4) =2 =06 —4.

@ Add a new row corresponding to hs = h1h2_1 = a%a%.
o Replace hy by hj = h1h3> and hy by hy = hah3?

°

Exchange first and last row and eliminate unnecessary row
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .

e Compute gcd(6,4) =2 =06 —4.

@ Add a new row corresponding to hs = h1h2_1 = a%a%.

o Replace hy by hj = h1h3> and hy by hy = hah3?

@ Exchange first and last row and eliminate unnecessary row
°

Add commutators

oo
oN o
|
o
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.

. . 6 2 1
The associated matrix is A= ( 4 2 0 ) .

e Compute gcd(6,4) =2 =06 —4.

@ Add a new row corresponding to hs = h1h2_1 = a%a%.

o Replace hy by hj = h1h3> and hy by hy = hah3?

@ Exchange first and last row and eliminate unnecessary row
°

Add commutators

o OoON
o N O
BN R
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
2 0 1
022
00 4

@ Is ajapaz € H?
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G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
2 0 1
022
00 4
@ Is ajapaz € H? No!
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
2 0 1
022
00 4
@ Is ajapaz € H? No!

o Is afa§ € H?
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Example: Matrix reduction

G = Fop = (a1, as, a3 | [a1,a3]=[a2, a3] = 1, [a1, az] = a3).

Let H = (h1, hp) with hy = a8asas,  hy = ajas.
2 01
0 2 2
0 0 4
@ Is ajapaz € H? No!
o Is afa§ € H? Yes: atal - (afa3) 2 = a5 € H.
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More Problems

The following problems are in TC® (resp. TCO(ExTGCD) for binary
inputs):

@ conjugacy problem,
compute presentations of subgroups,
compute kernels and preimages of homomorphisms,

compute the centralizers,

compute quotient presentations.
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Conclusion and Open Questions

@ Most problems by Macdonald et. al. 2015 are in TCO.
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Conclusion and Open Questions

@ Most problems by Macdonald et. al. 2015 are in TCO.
o Extended gcd problem with unary inputs and outputs is in TCC.
e Binary versions in TC/(ExTGCD)

Open Questions

@ Complexity of the uniform word problem for fixed nilpotency class but
an arbitrary number of generators?
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Conclusion and Open Questions

@ Most problems by Macdonald et. al. 2015 are in TCO.
o Extended gcd problem with unary inputs and outputs is in TCC.
e Binary versions in TC/(ExTGCD)

Open Questions

@ Complexity of the uniform word problem for fixed nilpotency class but
an arbitrary number of generators?

@ What if the nilpotency class is not fixed?

@ Same question for conjugacy...

Thank you!
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