
Amenability of Schreier Graphs and Strongly
Generic Algorithms for the Conjugacy Problem

Volker Diekert — Alexei Miasnikov — Armin Weiß
Stuttgart — Stevens — Stuttgart

Bath, July 7th, 2015

Volker Diekert — Alexei Miasnikov — Armin Weiß Amenability of Schreier Graphs and Strongly Generic Algorithms for the Conjugacy Problem



Overview

The conjugacy problem in HNN extensions and amalgamated
products

Strongly generic algorithms

Amenability of Schreier graphs

Applications to the conjugacy problem

1



Part I

The conjugacy problem in HNN
extensions and amalgamated

products.
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Dehn’s fundamental problems

Let G be a group, generated by a finite set Σ with Σ = Σ−1 ⊆ G .

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?

Conjugacy problem: Given v ,w ∈ Σ∗. Question: v ∼ w?

(∃ z ∈ G such that zvz−1 = w?)
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Graph of groups

Special cases for fundamental groups of graphs of groups:

1 Amalgamated products

G = H ?A K = 〈H,K | ϕ(a) = ψ(a) for a ∈ A 〉

for groups H and K with a common subgroup A.

2 HNN extensions

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with stable letters t1, . . . , tk and an isomorphism ϕi : Ai → Bi

for subgroups Ai and Bi of H.

H,K : vertex groups or base groups
A,A1, . . . , 1k : edge groups or associated subgroups.
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Examples

Baumslag-Solitar groups BSp,q =
〈
a, t

∣∣ tapt−1 = aq
〉

Conjugacy problem is decidable (actually TC0-complete).

Baumslag’s group (aka Baumslag-Gersten group)

BG1,2 =
〈
a, b

∣∣ (bab−1)a(bab−1)−1 = a2
〉

=
〈

BS1,2, b
∣∣ bab−1 = t

〉

Theorem (Miasnikov, Ushakov, Won 2006)

The word problem of BG1,2 is in polynomial time.

Theorem (Beese 2012)

Conjugacy problem of the Baumslag group is decidable in
non-elementary time.
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Examples

SL(2,Z) = Z4 ∗Z2 Z6

Semidirect products
HoFk =

〈
H, t1, . . . , tk

∣∣ tiht−1i = ϕi (h), h ∈ H, i = 1, . . . , k
〉
.

Theorem (Miller 1968)

There is a group Fn o Fk with undecidable conjugacy problem.

Theorem (Bogopolski, Martino, and Ventura 2010)

There is a group Z4 o Fk with undecidable conjugacy problem.
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Action on the Bass-Serre tree

A fgogog G acts naturally on its Bass-Serre tree.

Definition

The elliptic elements of G are those which fix a vertex of the tree.
The hyperbolic elements are those which act without fixed points.

Consequence

{ elliptic elements } =
⋃

g∈G g(H ∪ K )g−1, or

{ elliptic elements } =
⋃

g∈G gHg−1.

{Hyperbolic elements} = G \ { elliptic elements }.
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Solving the conjugacy problem of hyperbolic elements

Lemma (Collins’ Lemma)

Let

G = H ?A K or

G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

Let v ,w ∈ Σ∗ be

cyclically Britton-reduced, (no factor tat−1 or t−1bt in vv and
ww for any a ∈ A or b ∈ ϕ(A)),

representing hyperbolic group elements.

Then

v ∼ w ⇐⇒ there is a cyclic permutation w2w1 of w = w1w2

and a ∈ A such that v = aw2w1a
−1.
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Consequences

Theorem (Diekert, Miasnikov, W. 2014)

The conjugacy problem of BG1,2 is decidable in polynomial time
for hyperbolic elements.

Conjecture (Diekert, Miasnikov, W. 2014)

The conjugacy problem of BG1,2 is non-elementary on average.
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Consequences

Observation

Let

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with Ai finite for all i . If the the word problem of G is decidable,
then the conjugacy problem of G is decidable for hyperbolic
elements.

Proof.

Input: v ,w
Simply test for all a ∈

⋃
i Ai and all cyclic permutations w2w1 of w

whether v = aw2w1a
−1.
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Consequences

Theorem

Let

G =
〈
H, t1, . . . , tk

∣∣ tiati−1 = ϕi (a) for a ∈ Ai , i = 1, . . . , k
〉

with H finitely generated free abelian. Then for hyperbolic
elements, the conjugacy problem of G is decidable in polynomial
time.

The proof relies on:

Theorem (Frumkin 1977, von zur Gathen, Sieveking 1978)

Given a system of linear equation with integer coefficients, it can
be determined in polynomial time whether it has an integral
solution and, if so, the solution can be computed in polynomial
time.
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Consequences

Proof

Choose bases for H and for the Ai . This defines integer matrices

M
(1)
i ,M

(−1)
i for the inclusions

id : Ai → H, ϕi : Ai → H.

Subgroup membership problem for Ai (resp. ϕ(Ai )) reduces to
a system of linear integer equations.

Britton reductions tigt
−1
i → ϕi (g) in polynomial time.

Compute cyclically Britton-reduced words in polynomial time.
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Consequences

Proof (Cont.)

Apply Collins’ Lemma:

Check all cyclic permutations.

Let v = tε1i1 g1 · · · t
εn
in
gn, w = tε1i1 h1 · · · t

εn
in
hn

be cyclically reduced with gi , hi ∈ H. Then there is some
a ∈

⋃
i Ai with ava−1 =G w iff the system of equations

M
(εj )
ij

xj −M
(εj )
ij+1

xj+1 + gj = hj for 1 ≤ j ≤ n,

has an integral solution x1, . . . , xn.
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Part II

Strongly generic algorithms.
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Strongly generic algorithms

S ⊆ Σ∗ is called strongly generic if there is some ε > 0 such that

|Σn \ S |
|Σn|

≤ 2−εn.

A problem P is in polynomial time (resp. decidable) in a strongly
generic setting if there is a partial algorithm A and a strongly
generic set S such that

1 A solves P (in polynomial time) on all inputs from S .

2 A may refuse to give an answer or it might not terminate, but
only on inputs outside S .

3 If A gives an answer, then the answer must be correct.

The algorithm A never fools and solves (in polynomial time)
correctly “all” random inputs.
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Strongly generic algorithms

Theorem (Miasnikov, Rybalov 2008)

The halting problem (in a proper coding) is not strongly generically
decidable.

Theorem (Borovik, Miasnikov, Remeslennikov 2005)

The conjugacy problem of Miller’s group is strongly generically
decidable in polynomial time.
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Hyperbolic elements form a strongly generic subset if . . .

Theorem (Main Theorem)

Let G = H ?A K be an amalgamated product such that
[H : A] ≥ 3 and [K : A] ≥ 2, or let

G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

be an HNN extension
with [H : A] ≥ 2 and [H : ϕ(A)] ≥ 2.

Then the set of words representing hyperbolic elements in G is
strongly generic in Σ∗.

Proof: uses the theory of amenable graphs.
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Part III

Amenability
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Notation

Let Γ = (V ,E ) be a locally finite undirected graph.
For e ∈ E let ι(e) be its source and τ(e) its target.

Γ satisfies the Gromov condition if there exists a map
f : V → V such that supv∈V d(f (v), v) <∞ and∣∣f −1(v)

∣∣ ≥ 2 for all v ∈ V where d(u, v) denotes the distance.

Γ satisfies the doubling condition if there exists some k ∈ N
such that for every finite U ⊆ V we have∣∣∣{ v ∈ V

∣∣∣ d(v ,U) ≤ k
}∣∣∣ ≥ 2 |U| .

A random walk on a (directed) graph starts at some vertex,
chooses an outgoing edge uniformly at random and goes to
the target vertex, then it chooses the next edge. . .
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Amenability

Proposition (Kesten 1959, Gerl 1988, Gromov 1993)

Let Γ = (V ,E ) be a d-regular undirected graph. Then the
following statements are equivalent and define amenability:

(1) Γ satisfies the Gromov condition, i. e., there exists a map
f : V → V such that supv∈V d(f (v), v) <∞ and∣∣f −1(v)

∣∣ ≥ 2 for all v ∈ V .

(2) Γ satisfies the doubling condition: there exists some k ∈ N
such that for every finite U ⊆ V we have∣∣∣{ v ∈ V

∣∣∣ d(v ,U) ≤ k
}∣∣∣ ≥ 2 |U| .

(3) The random walk on Γ has exponentially decreasing return
probability.
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Examples

The Cayley graph of the free group F{a,b} is non-amenable:

1 a

b

a−1

b−1
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Examples

Amenability of locally finite graphs is not a quasi-isometry
invariant!!!

0 1 3 7 15 31

· · ·

The graph above satisfies the Gromov condition, but it is
quasi-isometric to an amenable graph.

· · ·

But: for d-regular graphs it is a quasi-isometry invariant.
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Schreier graphs

Schreier graph Γ = Γ(G ,P,Σ) of G with respect to a subgroup P
and set of generators Σ ⊆ G :

Vertices: V (Γ) = P\G = {Pg | g ∈ G } = right cosets.

Edges: E (Γ) = P\G × Σ: Arcs are drawn as

Pg
a−→ Pga.

|Σ|-regular directed graph.

If 1 /∈ Σ = Σ−1, then Γ(G ,P,Σ) is an undirected graph
thanks to the involution (Pg , a) = (Pga−1, a−1).

Cayley graph of G is Γ(G , {1} ,Σ).

A random word defines a random walk in the Schreier graph.

Aim: show non-amenability of Schreier graph.
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Characterization theorems

Theorem

Let G = H ?A K with [H : A] ≥ [K : A] ≥ 2 and P ∈ {H,K} and
let Σ = Σ−1 generate G.
Then the Schreier graph Γ(G ,P,Σ) is non-amenable iff
[H : A] ≥ 3.

Theorem

Let G =
〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

be an HNN extension
and let Σ = Σ−1 generate G.
Then the Schreier graph Γ(G ,H,Σ) is non-amenable iff both
[H : A] ≥ 2 and [H : ϕ(A)] ≥ 2.
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Examples

Example

Let BSp,q =
〈
a, t

∣∣ tapt−1 = aq
〉

be the Baumslag-Solitar group
with 1 ≤ p ≤ q. Then the Schreier graph Γ(BSp,q, 〈a〉 , {a, a, t, t})
is non-amenable iff p 6= 1.

Example

The Schreier graph Γ(BG1,2,BS1,2,
{
a, a, b, b

}
) is non-amenable.

Example

The Schreier graph Γ(H o Fk ,H,Σ) is non-amenable iff k ≥ 2.
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The Schreier graph Γ(H o Fk ,H,Σ) is non-amenable iff k ≥ 2.
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Proof

Proof for amalgamated products

For the only-if direction we assume [H : A] = [K : A] = 2. Then
the Schreier graph Γ(G ,P,Σ) is amenable:

· · ·
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Proof

Lemma (Normal forms for amalgamated products)

Fix transversals C ⊆ H and D ⊆ K for cosets of A in H and K
with 1 ∈ C ∩ D s. t. the decompositions

H = AC , K = AD

are unique.

Every group element g ∈ G = H ?A K can be uniquely written as

g =G x0 · · · xk

for some k ∈ N, x0 ∈ H ∪ K such that for all 1 ≤ i ≤ k we have

xi ∈ C ∪ D \ { 1 } ;

xi−1 ∈ H ⇐⇒ xi ∈ K .
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Proof

Proof for amalgamated products (Cont.)

Let [H : A] ≥ 3. We show the Gromov condition (1).
Let f : P\G → P\G as follows:
Fix c 6= c ′ ∈ C \ {1} and d ∈ D \ {1}.

For a normal form x0 · · · xk with xk = d and xk−1 ∈ {c , c ′},
set f (Px0 · · · xk) = Px0 · · · xk−2.

For a normal form x0 · · · xk with xk ∈ {c , c ′} and xk−1 = d ,
set f (Px0 · · · xk) = Px0 · · · xk−2.

Otherwise, set f (Px0 · · · xk) = Px0 · · · xk .

X Due to the normal form lemma, the function f is well-defined.

X sup { d(f (Pw),Pw) | Pw ∈ P\G } <∞.

X For every normal form w , either wcd and wc ′d or wdc and
wdc ′ are normal forms. Hence,

∣∣f −1(Pw)
∣∣ ≥ 2 for all w ∈ G .
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Part IV

Back to Conjugacy
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Baumslag group

Theorem (Diekert, Miasnikov, W. 2014)

Conjugacy in the Baumslag group BG1,2 can be solved in
polynomial time in a strongly generic setting by some algorithm
which always stops and which has non-elementary average time
complexity.

Hence, there are natural problems where average case complexity is
meaningless! Because average case is not better than worst case
and the worst case is useless.
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Groups with more than one end

Corollary

Let G be a finitely generated group with more than one end. If the
word problem of G is decidable in polynomial time, then the
conjugacy problem of G is decidable in polynomial time in a
strongly generic setting.

Proof.

By Stallings’ Structure Theorem, G can be written as amalgamated
product or HNN extension over some finite subgroup.
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Free abelian vertex groups

Corollary

If one of the following three cases holds

G = H ?A K is an amalgamated product with H, K f. g. free
abelian and [H : A] ≥ 3, [K : A] ≥ 2,
G =

〈
H, t

∣∣ tat−1 = ϕ(a) for a ∈ A
〉

is an HNN extension
with H f. g. free abelian and both [H : A] ≥ 2 and
[H : ϕ(A)] ≥ 2,
G is a fundamental group of a reduced finite graph of groups
with f. g. free abelian vertex groups and at least two edges,

then the conjugacy problem of G is decidable in polynomial
time on a strongly generic set.

Application

The conjugacy problem of the Z4 o Fn group with undecidable
conjugacy problem (Bogopolski, Martino, Ventura 2010) is
strongly generically in polynomial time.
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Thank you!
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