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Overview

Equations in (Z, +):

X+X=1
X+Y=Y+X
X+X+X=14Y+4+Y

Equations over an arbitrary group G:

aXY ! = bXaYy

W.I.0.g. of the form
a=1

for an expression a € (G U X U X~1)* (with variables X).
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Overview

The EQN-SAT(G) problem:

Constant: The group G
Input: an expression a € (GU X U X~ 1)*
Question: 3 an assignment 0 : X — G s.t. o(a) =17

The EQN-ID(G) problem:

Constant: The group G
Input: an expression a € (GUX UX~1)*
Question: is o(«) =1V assignments 0 : X — G?

In many infinite groups these problems are undecidable!
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In finite groups EQN-SAT(G) is in NP:
> Input: o € (GUX UX L)%,
» for each variable X € X’ that appears in «, guess o(X) € G,

Overview

> evaluate o(a).

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation
EQN-ID(G) <% EQN-SAT(G)

» Input: a € (GUX UX 1),
» for each g € G \ 1 check whether ag™1 is satisfiable,
> if yes, then « is not an identity.



Overview: complexity of equations in finite groups

Armin WeiB

Overview

Theorem (Goldmann, Russell, 2002)

» If G is nilpotent, then EQN-SAT(G) € P.




Overview: complexity of equations in finite groups

Armin WeiB

Overview

Theorem (Goldmann, Russell, 2002)

» If G is nilpotent, then EQN-SAT(G) € P.

EQN-SAT(G) EQN-ID(G)
nilpotent in P (actually ACCP) in P (actually ACC?)




Overview: complexity of equations in finite groups

Armin WeiB

Overview

Theorem (Goldmann, Russell, 2002)

» If G is nilpotent, then EQN-SAT(G) € P.
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Theorem (Horvath, Lawrence, Mérai, Szabd, 2007)

If G is non-solvable, then EQN-ID(G) is coNP-complete.

EQN-SAT(G) EQN-ID(G)
nilpotent in P (actually ACCP) in P (actually ACC?)
in NP in coNP

solvable,
non-nilpotent
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Overview

Theorem (Foldvéri, Horvath 2020)

» EQN-SAT(Q x A) € P for Q a p-group, A abelian.
> EQN-ID(N x A) € P for N nilpotent, A abelian.

EQN-SAT(G) EQN-ID(G)
nilpotent in P (actually ACCP) in P (actually ACC?)
in NP in coNP
solvable, o . o
non-nilpotent | P-8roup abelian in P nilpotent x abelian in P
77 77
non-solvable NP-complete coNP-complete
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Usually: encode false by 1 and true by # 1 € G.

Consider the following problem:
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For showing NP-completeness: reduce 3SAT to EQN-SAT(G)
~ need to encode conjunctions/disjunctions

Groups and
commutators

Usually: encode false by 1 and true by # 1 € G.

Consider the following problem:

» There are two nails in the wall.

» You have a rope and a picture hanging
on the rope.

» You want to wrap the rope around the | ;
nails such that, if you remove one of the _
nails, the picture falls down. =g

77 ifxz#landy#1

Commutators: [x,y] = x "ty Ixy = _
1  otherwise.



Examples: S3 and G*

Armin WeiB

Groups and
commutators

S3 = group of permutations over three elements
symmetry group of a regular triangle
{1,(12),(13),(23),(123),(132)}

~— ~——

s d

Q.
gy
0
I




Examples: S3 and G*

Armin WeiB

Groups and
commutators

S3 = group of permutations over three elements
symmetry group of a regular triangle
{1,(12),(13),(23),(123),(132)}
~— ~——
s d
P = C3 A C2

Q.
gy
0
I




Examples: S3 and G*

Armin WeiB

Groups and
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S3 = group of permutations over three elements

symmetry group of a regular triangle

{1,(12),(13),(23),(123),(132)}
\S,-/ \-7—/

- = C3 A C2
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Examples: S3 and G*

Armin WeiB

Groups and
commutators

S3 = group of permutations over three elements
= symmetry group of a regular triangle
{1,(12),(13),(23),(123),(132)}
~— ~——
s d
P = C3 A C2

= F({S,d})/{52:d3:17d525d2}

Q.
gy
0
I

~ [dys]=d s lds =dld = d




Examples: S3 and G*

Armin WeiB

Groups and
commutators
2
d( :\/1,52
3 1 G* = G648,705 = (53 x S3 X 53) X G3
2 2 with a(x,y,z) = (z,x,y)a
d( “ /\//,53 d( ‘. ;\//,51
33 13 3 1;
v




The Fitting length

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

Groups and
commutators




The Fitting length

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

G is nilpotent of class c if Vx1,...,xc41 € G : [x1,...,xc41] = L. ClolEeand

commutators




The Fitting length

Armin

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

G is nilpotent of class c if Vx1,...,xc41 € G : [x1,...,xc41] = L. Gy et

commutators

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1=Ng <Ny -~ <aNe=6G

with N;/N;_1 nilpotent for all i =1,... k.




The Fitting length

Armin WeiB

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

G is nilpotent of class c if Vx1,...,xc41 € G : [x1,...,xc41] = L. Gy et

commutators

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1=Ng <Ny -~ <aNe=6G

with N;/N;_1 nilpotent for all i =1,... k.

FitLen(53) =2: 1< G3 < S3 with S3/C3 =G




The Fitting length

Armin WeiB

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

G is nilpotent of class c if Vx1,...,xc41 € G : [x1,...,xc41] = L. Gy et

commutators

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1=Ng <Ny -~ <aNe=6G

with N;/N;_1 nilpotent for all i =1,... k.

FitLen(53) =2: 1< G3 < S3 with S3/C3 =G
FitLen(G*) = 3: 1 <1 (G x C3 x C3) <1 (S3 X S3 X S3) <1 G*




The Fitting length

Armin WeiB

Commutators: [x,y] = x" 1y Ixy and [x1,...,x] = [[x1, ..., xk—1], x«]

G is nilpotent of class c if Vx1,...,xc41 € G : [x1,...,xc41] = L. Gy et

commutators

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1=Ng <Ny -~ <aNe=6G

with N;/N;_1 nilpotent for all i =1,... k.

FitLen(53) =2: 1< G3 < S3 with S3/C3 =G

FitLen(G*) =3: 1< (C3 x C3 x C3) <1 (S3 x S5 x S3) < G*
> (53><53><53)/(C3>< C3><C3):(C2><C2>< C2)
> G*/(S3><53X53):C3
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Exponential time hypothesis (ETH)

Main Result

36 > 0 s.t. every algorithm for 3SAT needs time Q(2°")
(n = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH — 3¢ > 0 s.t. every algorithm for 3SAT needs time Q(2<(m+n))
(m = number of clauses).

~~ no 2°(ntm)_time algorithm for 3SAT under ETH.
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Main result

Let G be finite solvable group and assume that either
> FitLen(G) > 4, or
» FitLen(G) = 3 and there is no Fitting-length-two normal subgroup
whose index is a power of two.
Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time 2°0°8° N)
under ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

What about other groups of Fitting-length three?

Theorem (ldziak, Kawatek, Krzaczkowski, LICS 2020 )

EQN-SAT(Ss) and EQN-ID(S4) are not in P under ETH.

(S4 = symmetric group on 4 elements)

Armin WeiB

Main Result
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A C-coloring for C € N of a graph ' = (V,E)isamap x: V — [1..C].
A coloring x valid if x(u) # x(v) whenever {u,v} € E.

The C-COLORING problem:
Input: given an undirected graph I = (V, E)
Question: 3 a valid C-coloring of '?

» NP-complete for C > 3
» 3-COLORING cannot be solved in time 2°UVI+ED ynless ETH fails

(see e.g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk,
Pilipczuk, Saurabh, Thm. 14.6).

» ~ for every C > 3, C-COLORING cannot be solved in time 2°(
unless ETH fails.

IVI+|E])



Reduce 2-COLORING to EQN-SAT(S;)

= (V,E) graph with V={1,...,n}
E={ey...,em} where e, = {ik,jk}




Reduce 2-COLORING to EQN-SAT(S;)

= (V,E) graph with V={1,...,n}
E={ey...,em} where e, = {ik,jk}

» For every vertex i introduce a variable X;.




Reduce 2-COLORING to EQN-SAT(S;)

Armin WeiB

=(V,E) graph with V={1,....n}
E={ey...,em} where e, = {ik,jk}

» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI




Reduce 2-COLORING to EQN-SAT(S;)

=(V,E) graph with V={1,....n}
E={ey...,em} where e, = {ik,jk}

» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).




Reduce 2-COLORING to EQN-SAT(S;)

Armin WeiB

=(V,E) graph with V={1,....n}
E={e1,...,em} where ex = {ik, jx}

» For every vertex i introduce a variable X;.
» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable. l




Reduce 2-COLORING to EQN-SAT(S;)

Armin WeiB
=(V,E) graph with V={1,....n}
E={e1,...,em} where ex = {ik, jx}
» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable. \

Proof.
Recall: C3 <1 S3 and S3/CG = G, Let o : {X1,..., Xy} — G.




Reduce 2-COLORING to EQN-SAT(S;)

=(V,E) graph with V={1,....n}
E={e1,...,em} where ex = {ik, jx}

» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable.

Proof.
Recall: C3 <153 and $3/C3 = Go. Let o : {X1,...,Xn} — G.
Define a coloring x, : V — {1,2} by x,(/) =1 < o(X;) € G.

Armin WeiB




Reduce 2-COLORING to EQN-SAT(S;)

Armin WeiB
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» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable.

Proof.
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=(V,E) graph with V={1,....n}
E={e1,...,em} where ex = {ik, jx}

» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

B = d is satisfiable <= T is 2-colorable.

Proof.

Recall: C3 <1 S3and S3/C3 = G Leto: {Xy,..., X} — G.
Define a coloring xo : V — {1,2} by x,(i) =1 < o(X) € Gs.
1 if O‘(O&l) € G

d if 0'(041) € C3 < Xo(il) 7é Xa(jl)

o(ld,a]) = {




Reduce 2-COLORING to EQN-SAT(S;)
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=(V,E) graph with V={1,....n}
E={ey...,em} where e, = {ik,jk}

» For every vertex i introduce a variable X;.

» For every edge ex = {ik,Jjk} set ax = X; XJZI

> Set B=[d,a1,...,an] = [-[[d,a1], 2], ..., am] (recall d = (123)).

Length: |5] ~ 2™.

[d, 041] = d_lal_ldoq

[d, a1, 0] = al_ld_laldagld_lal_ldaloq

[d, a1, an, 03] = aglalfldflaldazdflalfldal as” ! alfldflaldaz_ldflalfldalaz o3
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Recall: G* = (55 x S3 x 53) x G5
= (V,E) graph with V={1,...,n}, E={e,...,em}.
P For every vertex i introduce a variable X;.
Group the edges in u =~ /m groups of 1 edges each.
Jke”
Set By = Yk_l[(s, 1,1),0k1,--.,aky] Yk for a new variable Y.

| 2

» For every edge IS {I'kx,jk,g} set gy = X,'MX-fl
>

> Sety=[(d,1,1), B1,.... 5],
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P For every vertex i introduce a variable X;.
Group the edges in u =~ /m groups of 1 edges each.

Set Bk = Y, [(5,1,1), k1, --.,ax,] Yk for a new variable Yj.

»
» For every edge IS {I'kj,jk,g} set gy = X,'k,L,XJ-:j.
>
» Sety=[(d,1,1),51,..., 8]

Key Observation

Bel ~ 2~ [y| m 2 20 22V

Assume EQN-SAT(G*) decidable in time 20(log” N) (N = equation length).
Then we can solve 3-COLORING in time 20(7+m);
with N = 22V e have 20008°2*Y™) — 20(+/m") — 20(m) contradicting ETH.
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» Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G)
under ETH if G if of Fitting length 3 and complicated enough.

» Generalization to all groups of Fitting length 3 under preparation (in
collaboration with Idziak, Kawatek, Krzaczkowski).

Conclusion

» What about groups of Fitting length two?

» Conjecture: if G is finite solvable, then EQN-SAT(G) and
EQN-ID(G) are decidable in quasipolynomial time.

Thank you!
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