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Dehn’s fundamental problems

Let G be a group, generated by a finite set Σ and p : Σ∗ → G the
canonical projection. Write a for the letter a−1 ∈ Σ.

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?
WP(G ) = p−1(1)

Conjugacy problem: Given v ,w ∈ Σ∗. Question: v ∼ w?

(∃ z ∈ G such that zvz−1 = w?)

Isomorphism problem: Are the groups 〈Σ | R〉 and 〈Σ′ | R ′〉
isomorphic?
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Free groups

The free group with basis X (where ∆ = X ∪ X ):

F (X ) = ∆∗
/
{ aa = aa = 1 | a ∈ X }

WP(F (X )) = two-sided Dyck language

PDA for WP(F (X )): when reading a ∈ ∆:

if stack-top 6= a then
push(a);

else
pop;

endif
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Virtually free groups

Virtually free = free subgroup of finite index

 there are F free, Q finite, and a short exact sequence

1→ F → G → Q → 1.

Virtually free presentation:

generating set X of F ,

a system of representatives R ⊆ G of Q ( G = F · R)

multiplication rules: for q ∈ R, a ∈ R ∪ X there are f ∈ F , r ∈ R with

qa = f r .

Example

Let F = Z = 〈x〉 , Q = Z/2Z, R = { 1, a }
with rules ax = xa, aa = 1.

Every element can be written as xkaε with k ∈ Z, ε ∈ { 0, 1 }.
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Virtually free groups are context-free

PDA: given a word w ∈ (X ∪ X ∪ R)∗, rewrite it as f r with f ∈ F , r ∈ R,
keep f on the stack, r in the state.

Example

Let F = Z = 〈x〉 , Q = Z/2Z, R = { 1, a }
with rules ax = xa, aa = x .

PDA for the word problem:

Input: a a x x a x x a x

Stack:

xxx

State: 1

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free (the word
problem is a context-free language).
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Géraud Sénizergues, Armin Weiß The isomorphism problem for finite extensions of free groups is in PSPACE 5/13



Virtually free groups are context-free

PDA: given a word w ∈ (X ∪ X ∪ R)∗, rewrite it as f r with f ∈ F , r ∈ R,
keep f on the stack, r in the state.

Example

Let F = Z = 〈x〉 , Q = Z/2Z, R = { 1, a }
with rules ax = xa, aa = x .

PDA for the word problem:

Input:
↓
a a x x a x x a x

Stack:

xxx

State: 1

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free (the word
problem is a context-free language).
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Géraud Sénizergues, Armin Weiß The isomorphism problem for finite extensions of free groups is in PSPACE 5/13



Virtually free groups are context-free

PDA: given a word w ∈ (X ∪ X ∪ R)∗, rewrite it as f r with f ∈ F , r ∈ R,
keep f on the stack, r in the state.

Example

Let F = Z = 〈x〉 , Q = Z/2Z, R = { 1, a }
with rules ax = xa, aa = x .

PDA for the word problem:

Input: a a x x a x
↓
x a x

Stack: xx

x

State: a

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free (the word
problem is a context-free language).
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The isomorphism problem for virtually free groups

1→ Fi → Gi → Qi → 1

G1

F1 = Z = 〈x〉 , Q1 = Z/2Z, R1 = { 1, a }
with rules ax = xa, aa = 1.

G2

F2 = Z = 〈y〉 , Q2 = Z/2Z, R2 = { 1, b }
with rules by = yb, bb = y ,

G3

F3 = Z = 〈z〉 , Q3 = Z/2Z, R3 = { 1, c }
with rules cz = zc , cc = zz .

Then G1
∼= G3

∼= Z× Z/2Z (via z 7→ x , c 7→ ax) and G2
∼= Z.
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The isomorphism problem for virtually free groups

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable
(input: presentations with the promise to be virtually free).

Theorem (Sénizergues, 1993)

The isomorphism problem for virtually free groups is primitive recursive
(input: virtually free presentation).

Theorem (Sénizergues, 1996)

The isomorphism problem for context-free groups is primitive recursive
(input: pda or c.f. grammar).

Theorem (S.,W.)

The isomorphism problem for virtually free groups is in PSPACE, for
context-free groups it is in DSPACE(22O(n)

).
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Definition (Graph of Groups)

A graph of groups G is a connected graph Y = (V (Y ),E (Y )) and

1 for each vertex P ∈ V (Y ), a vertex group GP ,

2 for each edge y ∈ E (Y ), an edge group Gy such that Gy = Gy .

3 for each y ∈ E (Y ), an injective hom. from Gy to Gs(y).

Definition (Fundamental group)

The fundamental group π1(G,P) of a graph of groups G over Y is the
fundamental group of Y + elements of the respective vertex groups.

Example
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Fm 1

Gy1 = {1}

Gy2 = {1}
...

Gym = {1}
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Z/2Z Z/3Z

{1}

PSL(2,Z) ∼= Z/2Z ∗ Z/3Z
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Definition (Graph of Groups)
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Example

〈a〉 Gy = 〈b〉

BSp,q =
〈
a, y

∣∣ yapy−1 = aq
〉

with embeddings b 7→ ap and b 7→ aq
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Theorem (Karrass, Pietrowski, Solitar 73)

A f. g. group is virtually free iff it is the fundamental group of a finite graph
of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let G1 and G2 be reduced finite graph of groups with finite vertex groups.
Then π1(G1,P1) ∼= π1(G2,P2) iff G1 can be transformed into G2 by a
sequence of slide moves.
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Example (Slide move)

P

Gx

Gy

 

P

Gx

Gy

If there is some g ∈ GP such that g−1G x
x g ≤ G y

y .
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Corollary

It can be decided in NSPACE(n) whether π1(G1,P1) ∼= π1(G2,P2) given
two graph of groups G1 and G2 with finite vertex groups.

Krstić’s proof.

For both input groups guess a gog + an isomorphism

verify that the guesses are correct

check the two gogs for isomorphism
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For both input groups guess a gog + an isomorphism

verify that the guesses are correct

check the two gogs for isomorphism
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New approach

Show that the gog and the isomorphism are “small”.

Guess a gog + an isomorphism.

Check that the guess is correct.

Theorem (S.,W.)

The following problem is in NTIME(22O(n)
):

Input: a c.f grammar for the word problem of a group G,
Compute a gog G with finite vertex groups and π1(G,P) ∼= G

Theorem (S.,W.)

The following problem is in NP:
Input: a group G given as virtually free presentation,
Compute a gog G with finite vertex groups and π1(G,P) ∼= G.
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Small graph of groups

Main Lemma

Let G be given as context-free grammar of size N ≥ 4 for its word problem.
There is a graph of groups G over Y and an isomorphism
ϕ : π1(G,T )→ G with

1 |V (Y )| ≤ N50·2N ,

2 |GP | ≤ N50·2N for all P ∈ V (Y ),

3 |ϕ(a)| ≤ 24 · N175·2N for every a ∈ ∆ = generating set of π1(G,T ).

 22O(N)

If G is given as virtually free presentation of size M ≥ 4, then

1 |V (Y )| ≤ M + 1,

2 |GP | ≤ M for all P ∈ V (Y ),

3 |ϕ(a)| ≤ 12(M + 1)6 for every a ∈ ∆.

 MO(1)
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Virtually free groups are “tree-like”

Let Γ(G ) be the Cayley graph of a c.f. group G . Then:

Γ(G ) is quasi-isometric to a tree

Γ(G ) has finite tree width

The Cayley graph of PSL(2,Z) ∼= Z/2Z ∗ Z/3Z has finite tree-width.
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Γ(G ) has finite tree width

Z× Z/2Z

· · · · · ·

↓

· · · · · ·

Cuts = edges of the structure tree.

Key point for the main Lemma: bound size of cuts and “vertices”
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Open Questions

Bound the number of slide moves.

Precise complexity of isomorphism of gogs (e. g. PSPACE complete)?

Isomorphism problem for context-free groups in EXPSPACE?

Upper/lower bound for the size of finite subgroups of c.f. groups?

Thank you!
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