On the dimension of matrix embeddings of torsion-free nilpotent groups

Funda Gul and Armin Weiß

Stevens Institute of Technology

Hoboken, November 25, 2016

au-Groups

Definition

• A group G is nilpotent of class c if

$$G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$$
 where $\Gamma_{i+1} = [\Gamma_i, G] = \langle x^{-1}g^{-1}xg \text{ for } x \in \Gamma_i, g \in G \rangle$.

au-Groups

Definition

• A group G is nilpotent of class c if

$$G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$$
 where $\Gamma_{i+1} = [\Gamma_i, G] = \langle x^{-1}g^{-1}xg \text{ for } x \in \Gamma_i, g \in G \rangle$.

• τ -group = finitely generated torsion-free nilpotent group.

au-Groups

Definition

• A group G is nilpotent of class c if

$$G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$$
 where $\Gamma_{i+1} = [\Gamma_i, G] = \left\langle x^{-1} g^{-1} x g \text{ for } x \in \Gamma_i, g \in G \right\rangle$.

• τ -group = finitely generated torsion-free nilpotent group.

Examples:

- unitriangular matrices $UT_n(\mathbb{Z})$ (upper triangular and diagonal entries 1)
- Heisenberg groups
- free nilpotent groups $F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$ where $([x_1, \dots, x_{c+1}] = [[x_1, \dots, x_c], x_{c+1}])$
- $\langle a, b, c, d, e \mid [a, b] = [b, c] = d^2 e, [a, c] = e^3,$ $[e, x] = [d, x] = 1 \, \forall x \rangle$

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Several other embeddings/algorithms:

• Merzlijakov and Kargapolov, 1979

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Several other embeddings/algorithms:

- Merzlijakov and Kargapolov, 1979
- Lo and Ostheimer, 1999 (computes Jennings' embedding also for polycyclic groups)

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Several other embeddings/algorithms:

- Merzlijakov and Kargapolov, 1979
- Lo and Ostheimer, 1999 (computes Jennings' embedding also for polycyclic groups)
- DeGraaf and Nickel, 2002

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Several other embeddings/algorithms:

- Merzlijakov and Kargapolov, 1979
- Lo and Ostheimer, 1999 (computes Jennings' embedding also for polycyclic groups)
- DeGraaf and Nickel, 2002
- Nickel, 2006

Theorem (Jennings 1955)

Every τ -group can be embedded into $UT_N(\mathbb{Z})$ for some $N \in \mathbb{N}$.

The embedding is given by the G-action on $\mathbb{Q}G/I^{c+1}$ where $I = \left\{ \sum_g \alpha_g g \mid \sum_g \alpha_g = 0 \right\}$ is the augmentation ideal.

Several other embeddings/algorithms:

- Merzlijakov and Kargapolov, 1979
- Lo and Ostheimer, 1999 (computes Jennings' embedding also for polycyclic groups)
- DeGraaf and Nickel, 2002
- Nickel, 2006

Nickels seems to be the "best" for doing actual computations.

Why embeddings into matrices are useful:

- lot known about matrices linear algebra
- computations are easy (word problem in Logspace,...)
- basic building block for embedding polycyclic groups: interesting for cryptographic purposes

Why embeddings into matrices are useful:

- lot known about matrices linear algebra
- computations are easy (word problem in Logspace,...)
- basic building block for embedding polycyclic groups: interesting for cryptographic purposes

Desired properties properties of embeddings:

- small dimension (little overhead when doing computations)
- easy to compute
- undistorted (geometry is preserved)
- preserves conjugacy etc.

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i,a_j] \in \langle a_{\mathsf{max}\{i,j\}+1},\ldots,a_n \rangle.$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

$$F_{2,2} = \langle a_1, a_2 \mid [[x, y], z] = 1 \text{ for } x, y, z \in F_{2,2} \rangle$$

• (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^xa_2^y$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 =$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 =$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g = a_1^{x_1} \cdots a_n^{x_n} =: \vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 = a_1a_2[a_2, a_1]a_2^4a_1^2a_2$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 = a_1a_2a_2^4a_1^2a_2[a_2, a_1]$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 = a_1a_2a_2^4a_1^2a_2[a_2, a_1]$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g = a_1^{x_1} \cdots a_n^{x_n} =: \vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\max\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 = a_1a_2^5a_1^2a_2[a_2, a_1]$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2 = a_1a_1^2a_2^5[a_2, a_1]^{10}a_2[a_2, a_1]$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2 a_1 a_2^4 a_1^2 a_2 = a_1^3 a_2^6 [a_2, a_1]^{11}$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle.$$

Example

 $F_{2,2} = \langle a_1, a_2 \mid [[x, y], z] = 1 \text{ for } x, y, z \in F_{2,2} \rangle$

- (a_1, a_2) is not a Mal'cev basis since a_2a_1 cannot be written as $a_1^x a_2^y$
- $(a_1, a_2, [a_2, a_1])$ is a Mal'cev basis:

$$a_2a_1a_2^4a_1^2a_2=a_1^3a_2^6[a_2,a_1]^{11}$$

• $F_{2,2} = UT_3(\mathbb{Z}) = H_3 = \langle a_1, a_2, a_3 \mid [a_2, a_1] = a_3, [a_3, a_1] = [a_3, a_2] = 1 \rangle$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \dots, a_n \rangle$$
.

The product of two elements can be written in the same fashion

$$a_1^{x_1}\cdots a_n^{x_n}\cdot a_1^{y_1}\cdots a_n^{y_n}=a_1^{q_1}\cdots a_n^{q_n}.$$

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle$$
.

• The product of two elements can be written in the same fashion

$$a_1^{x_1} \cdots a_n^{x_n} \cdot a_1^{y_1} \cdots a_n^{y_n} = a_1^{q_1} \cdots a_n^{q_n}.$$

The exponents q_1, \ldots, q_n are functions of x_1, \ldots, x_n and y_1, \ldots, y_n

Let G be a τ -group with Mal'cev basis $(a_1, \ldots, a_n) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g=a_1^{x_1}\cdots a_n^{x_n}=:\vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$ and such that

$$[a_i, a_j] \in \langle a_{\mathsf{max}\{i,j\}+1}, \ldots, a_n \rangle$$
.

The product of two elements can be written in the same fashion

$$a_1^{x_1} \cdots a_n^{x_n} \cdot a_1^{y_1} \cdots a_n^{y_n} = a_1^{q_1} \cdots a_n^{q_n}.$$

The exponents q_1, \ldots, q_n are functions of x_1, \ldots, x_n and y_1, \ldots, y_n – the multiplication polynomials.

Theorem (P. Hall, 1957)

$$q_1,\ldots,q_n\in\mathbb{Z}[x_1,\ldots,x_n,y_1,\ldots,y_n]$$

$$UT_N(\mathbb{Z}) \leq \operatorname{Aut}(\mathbb{Q}^N)$$

Embedding into $UT_N(\mathbb{Z}) = \text{description of } G\text{-action on } \mathbb{Q}^N$

$$UT_N(\mathbb{Z}) \leq \operatorname{Aut}(\mathbb{Q}^N)$$

Embedding into $UT_N(\mathbb{Z})$ = description of G-action on \mathbb{Q}^N

The dual space of the group algebra $\mathbb{Q}G$

$$(\mathbb{Q}G)^* = \{f : \mathbb{Q}G \to \mathbb{Q} \mid f \text{ is linear}\}$$
$$= \{f : G \to \mathbb{Q}\} = \{f : \mathbb{Z}^n \to \mathbb{Q}\}$$

is a G-module:

$$f^g(z) = f(z \cdot g^{-1})$$
 for $g \in G$, $f \in (\mathbb{Q}G)^*$ and $z \in \mathbb{Q}G$

$$UT_N(\mathbb{Z}) \leq \operatorname{Aut}(\mathbb{Q}^N)$$

Embedding into $UT_N(\mathbb{Z})$ = description of G-action on \mathbb{Q}^N

The dual space of the group algebra $\mathbb{Q}G$

$$(\mathbb{Q}G)^* = \{f : \mathbb{Q}G \to \mathbb{Q} \mid f \text{ is linear}\}$$
$$= \{f : G \to \mathbb{Q}\} = \{f : \mathbb{Z}^n \to \mathbb{Q}\}$$

is a G-module:

$$f^g(z) = f(z \cdot g^{-1})$$
 for $g \in G$, $f \in (\mathbb{Q}G)^*$ and $z \in \mathbb{Q}G$

The image of $f \in (\mathbb{Q}G)^*$ under g with $g^{-1} = a_1^{y_1} \cdots a_n^{y_n}$ can be described with the multiplication polynomials q_1, \ldots, q_n :

$$f^{g}(a_{1}^{x_{1}}\cdots a_{n}^{x_{n}})=f(a_{1}^{x_{1}}\cdots a_{n}^{x_{n}}g^{-1})=f(a_{1}^{q_{1}}\cdots a_{n}^{q_{n}})$$

$$UT_N(\mathbb{Z}) \leq \operatorname{Aut}(\mathbb{Q}^N)$$

Embedding into $UT_N(\mathbb{Z})$ = description of G-action on \mathbb{Q}^N

The dual space of the group algebra $\mathbb{Q}G$

$$(\mathbb{Q}G)^* = \{f : \mathbb{Q}G \to \mathbb{Q} \mid f \text{ is linear}\}$$
$$= \{f : G \to \mathbb{Q}\} = \{f : \mathbb{Z}^n \to \mathbb{Q}\}$$

is a G-module:

$$f^g(z) = f(z \cdot g^{-1})$$
 for $g \in G$, $f \in (\mathbb{Q}G)^*$ and $z \in \mathbb{Q}G$

The image of $f \in (\mathbb{Q}G)^*$ under g with $g^{-1} = a_1^{y_1} \cdots a_n^{y_n}$ can be described with the multiplication polynomials q_1, \ldots, q_n :

$$f^{g}(x_{1},...,x_{n})=f(a_{1}^{x_{1}}\cdots a_{n}^{x_{n}}g^{-1})=f(q_{1},...,q_{n}).$$

$$UT_N(\mathbb{Z}) \leq \operatorname{Aut}(\mathbb{Q}^N)$$

Embedding into $UT_N(\mathbb{Z})$ = description of G-action on \mathbb{Q}^N

The dual space of the group algebra $\mathbb{Q}G$

$$(\mathbb{Q}G)^* = \{f : \mathbb{Q}G \to \mathbb{Q} \mid f \text{ is linear}\}$$
$$= \{f : G \to \mathbb{Q}\} = \{f : \mathbb{Z}^n \to \mathbb{Q}\}$$

is a G-module:

$$f^g(z) = f(z \cdot g^{-1})$$
 for $g \in G$, $f \in (\mathbb{Q}G)^*$ and $z \in \mathbb{Q}G$

The image of $f \in (\mathbb{Q}G)^*$ under g with $g^{-1} = a_1^{y_1} \cdots a_n^{y_n}$ can be described with the multiplication polynomials q_1, \ldots, q_n :

$$f^{g}(x_{1},...,x_{n})=f(a_{1}^{x_{1}}\cdots a_{n}^{x_{n}}g^{-1})=f(q_{1},...,q_{n}).$$

 \rightsquigarrow compute f^g = substitute multiplication polys into f.

Let t_i be the *i*'th coordinate function:

$$t_i: G \longrightarrow \mathbb{Z}$$

 $a_1^{x_1} \cdots a_n^{x_n} \mapsto x_i$

Well-def. since each $g \in G$ can be written uniquely as $a_1^{x_1} \cdots a_n^{x_n}$.

Let t_i be the *i*'th coordinate function:

$$t_i: G \longrightarrow \mathbb{Z}$$

 $a_1^{x_1} \cdots a_n^{x_n} \mapsto x_i$

Well-def. since each $g \in G$ can be written uniquely as $a_1^{x_1} \cdots a_n^{x_n}$.

$$t_i \in \mathbb{Q}[x_1,\ldots,x_n] \subseteq \{f:\mathbb{Z}^n \to \mathbb{Q}\} = \{f:G \to \mathbb{Q}\} = (\mathbb{Q}G)^*$$

Let t_i be the i'th coordinate function:

$$t_i: G \longrightarrow \mathbb{Z}$$

 $a_1^{x_1} \cdots a_n^{x_n} \mapsto x_i$

Well-def. since each $g \in G$ can be written uniquely as $a_1^{x_1} \cdots a_n^{x_n}$.

$$t_i \in \mathbb{Q}[x_1, \dots, x_n] \subseteq \{f : \mathbb{Z}^n \to \mathbb{Q}\} = \{f : G \to \mathbb{Q}\} = (\mathbb{Q}G)^*$$

Lemma (Nickel, 2006)

Let $f \in \mathbb{Q}[x_1, ..., x_n]$, then the G-submodule $M = span(f^G)$ of $(\mathbb{Q}G)^*$ generated by f is finite-dimensional as a \mathbb{Q} -vector space.

Let t_i be the *i*'th coordinate function:

$$t_i: G \longrightarrow \mathbb{Z}$$

 $a_1^{x_1} \cdots a_n^{x_n} \mapsto x_i$

Well-def. since each $g \in G$ can be written uniquely as $a_1^{x_1} \cdots a_n^{x_n}$.

$$t_i \in \mathbb{Q}[x_1, \dots, x_n] \subseteq \{f : \mathbb{Z}^n \to \mathbb{Q}\} = \{f : G \to \mathbb{Q}\} = (\mathbb{Q}G)^*$$

Lemma (Nickel, 2006)

Let $f \in \mathbb{Q}[x_1, ..., x_n]$, then the G-submodule $M = span(f^G)$ of $(\mathbb{Q}G)^*$ generated by f is finite-dimensional as a \mathbb{Q} -vector space.

Lemma (Nickel, 2006)

The submodule $M = \text{span}\left(\left\{t_1, \ldots, t_n\right\}^G\right)$ of $(\mathbb{Q}G)^*$ generated by t_1, \ldots, t_n is a finite dimensional faithful G-module.

Need to compute the action of $G=a_1^\mathbb{Z}\cdots a_n^\mathbb{Z}$ on

$$span(\lbrace t_1,\ldots,t_n\rbrace^G)$$

Need to compute the action of $G=a_1^{\mathbb{Z}}\cdots a_n^{\mathbb{Z}}$ on

$$\operatorname{span}(\{t_1,\ldots,t_n\}^G) = \operatorname{span}(\cdots\operatorname{span}(\{t_1,\ldots,t_n\}^{a_1^{\mathbb{Z}}})\cdots)^{a_n^{\mathbb{Z}}})$$

Need to compute the action of $G=a_1^{\mathbb{Z}}\cdots a_n^{\mathbb{Z}}$ on

$$\operatorname{span}(\lbrace t_1,\ldots,t_n\rbrace^G) = \operatorname{span}(\cdots\operatorname{span}(\lbrace t_1,\ldots,t_n\rbrace^{a_1^{\mathbb{Z}}})\cdots)^{a_n^{\mathbb{Z}}})$$

Find a basis:

• Start with coordinate functions t_1, \ldots, t_n

Need to compute the action of $G=a_1^\mathbb{Z}\cdots a_n^\mathbb{Z}$ on

$$\operatorname{span}(\{t_1,\ldots,t_n\}^G) = \operatorname{span}(\cdots \operatorname{span}(\{t_1,\ldots,t_n\}^{a_1^{\mathbb{Z}}})\cdots)^{a_n^{\mathbb{Z}}})$$

Find a basis:

- Start with coordinate functions t_1, \ldots, t_n
- Extend $\{t_1, \ldots, t_n\}$ to a \mathbb{Q} -basis B of span $\{t_1, \ldots, t_n\}^{a_1^{\mathbb{Z}}}$ (finite dimensional):
 - Compute polynomials $q_1^{(1)}, \ldots, q_n^{(1)}$ with $a_n^{x_1} \cdots a_n^{x_n} \cdot a_1^{-1} = a_1^{q_1^{(1)}} \cdots a_n^{q_n^{(1)}}$
 - substitute them into the polynomials of the previous step until no new linearly independent polynomials appear.

Need to compute the action of $G=a_1^\mathbb{Z}\cdots a_n^\mathbb{Z}$ on

$$\mathsf{span}(\{\,t_1,\ldots,t_n\,\}^G)=\mathsf{span}(\cdots\mathsf{span}(\{\,t_1,\ldots,t_n\,\}^{a_1^\mathbb{Z}})\cdots)^{a_n^\mathbb{Z}})$$

Find a basis:

- Start with coordinate functions t_1, \ldots, t_n
- Extend $\{t_1, \ldots, t_n\}$ to a \mathbb{Q} -basis B of span $\{t_1, \ldots, t_n\}^{a_1^{\mathbb{Z}}}$ (finite dimensional):
 - Compute polynomials $q_1^{(1)}, \ldots, q_n^{(1)}$ with $a_n^{x_1} \cdots a_n^{x_n} \cdot a_1^{-1} = a_1^{q_1^{(1)}} \cdots a_n^{q_n^{(1)}}$
 - substitute them into the polynomials of the previous step until no new linearly independent polynomials appear.
- Extend B to a \mathbb{Q} -basis of span $(B^{a_2^{\mathbb{Z}}})$
- ...

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$t_i^{a_1^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3}) =$$

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$t_i^{a_1^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3}) = t_i(a_1^{x_1}a_2^{x_2}a_3^{x_3} \cdot a_1^{-k})$$

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$t_i^{a_1^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=t_i(a_1^{x_1}a_2^{x_2}\cdot a_1^{-k}\cdot a_3^{x_3})$$

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$t_i^{a_1^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3}) = t_i(a_1^{x_1} \cdot a_1^{-k} \cdot a_2^{x_2} \cdot a_3^{kx_2} \cdot a_3^{x_3})$$

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$t_i^{a_1^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3}) = t_i(a_1^{x_1-k}a_2^{x_2}a_3^{x_3+kx_2})$$

$$H_3 = UT_3(\mathbb{Z}) = F_{2,2} = \langle a_1, a_2, a_3 \mid [a_1, a_3] = [a_2, a_3] = 1, [a_1, a_2] = a_3 \rangle$$

$$a_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad a_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is a Mal'cev basis for H.

$$\begin{split} t_i^{\underline{a_1^k}} \big(a_1^{x_1} a_2^{x_2} a_3^{x_3} \big) &= t_i \big(a_1^{x_1 - k} a_2^{x_2} a_3^{x_3 + k x_2} \big) \\ &= \begin{cases} x_1 - k &= t_1 \big(a_1^{x_1} a_2^{x_2} a_3^{x_3} \big) - k \cdot 1, \\ x_2 &= t_2 \big(a_1^{x_1} a_2^{x_2} a_3^{x_3} \big), \\ x_3 + k x_2 &= t_3 \big(a_1^{x_1} a_2^{x_2} a_3^{x_3} \big) + k t_2 \big(a_1^{x_1} a_2^{x_2} a_3^{x_3} \big), \end{cases} \end{split}$$

Similarly,

$$\begin{split} &t_1{}^{a_2^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_1=t_1\\ &t_2{}^{a_2^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_2-k=t_2-k\cdot 1\\ &1{}^{a_2^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=1 \qquad \qquad \text{(constant polynomial)}\\ &t_3{}^{a_2^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_3=t_3\\ &t_1{}^{a_3^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_1=t_1\\ &t_2{}^{a_3^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_2=t_2\\ &t_3{}^{a_3^k}(a_1^{x_1}a_2^{x_2}a_3^{x_3})=x_3-1=t_3-k\cdot 1 \end{split}$$

 \rightsquigarrow $(t_3, t_2, t_1, 1)$ is a \mathbb{Q} -basis for the H-submodule. So H can be embedded into $UT_4(\mathbb{Z})$.

With the basis $(t_3, t_2, t_1, 1)$:

$$a_1 \mapsto \left[egin{array}{cccc} 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 1 \end{array}
ight] \hspace{0.5cm} a_2 \mapsto \left[egin{array}{cccc} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

$$a_3 \mapsto \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

For comparison: Jennings' embedding of *H* has dimension 7.

$$a_3 \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Heisenberg groups

(2m+1)-dimensional Heisenberg group with Mal'cev basis (a_1,\ldots,a_{2m+1})

$$H = \langle a_1, \dots, a_{2m+1} \mid [a_i, a_{m+i}] = a_{2m+1} \text{ for } 1 \le i \le m,$$

 $[a_i, a_j] = 1 \text{ for } i = 2m+1 \text{ or } |i-j| \ne m \rangle$

$$H = egin{pmatrix} 1 & \star & \star & \cdots & \star & \star \\ & 1 & 0 & \cdots & 0 & \star \\ & & \ddots & \ddots & \vdots & \vdots \\ & & & 1 & 0 & \star \\ & & & & 1 \end{pmatrix}$$

$$a_1 = egin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ & & 1 \end{pmatrix}, \quad a_2 = egin{pmatrix} 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}, \ldots, a_m = egin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ & & \ddots & \vdots \\ & & & & 1 \end{pmatrix}$$

Heisenberg groups

Theorem

For the (2m+1)-dimensional Heisenberg group

- Jennings' embedding has size $2m^2 + 3m + 2$,
- Nickel's embedding has size 2m + 2.

Heisenberg groups

Theorem

For the (2m+1)-dimensional Heisenberg group

- Jennings' embedding has size $2m^2 + 3m + 2$,
- Nickel's embedding has size 2m + 2.

Proof.

For $1 \le j \le m$, we have

$$t_i^{\vec{a_j}^{-k}}(\vec{a}^{\vec{x}}) = \begin{cases} x_j - k & \text{for } i = j \\ x_i & \text{for } i \neq j \text{ and } i \neq 2m + 1 \\ x_{2m+1} + kx_{m+j} & \text{for } i = 2m + 1 \end{cases}$$

For $m + 1 \le j \le 2m + 1$,

$$t_i^{a_j^{-k}}(\vec{a}^{\vec{x}}) = \begin{cases} x_j - k & \text{for } i = j \\ x_i & \text{for } i \neq j \end{cases}$$

Embed a τ -group G into $UT_N(\mathbb{Z})$.

Trivial lower bound:

$$\frac{N(N-1)}{2} = \mathsf{Hirsch-length}(UT_N(\mathbb{Z})) \geq \mathsf{Hirsch-length}(G)$$

Embed a τ -group G into $UT_N(\mathbb{Z})$.

Trivial lower bound:

$$\frac{N(N-1)}{2} = \mathsf{Hirsch-length}(\mathit{UT}_N(\mathbb{Z})) \geq \mathsf{Hirsch-length}(\mathit{G})$$

For Nickel's embedding:

$$N \ge \mathsf{Hirsch}\mathsf{-length}(G) + 1$$

Embed a τ -group G into $UT_N(\mathbb{Z})$.

Trivial lower bound:

$$\frac{\mathit{N}(\mathit{N}-1)}{2} = \mathsf{Hirsch-length}(\mathit{UT}_\mathit{N}(\mathbb{Z})) \geq \mathsf{Hirsch-length}(\mathit{G})$$

For Nickel's embedding:

$$N \ge \mathsf{Hirsch}\mathsf{-length}(G) + 1$$

Nickel's experiments (2006) for embedding $UT_m(\mathbb{Z})$ into $UT_N(\mathbb{Z})$

m	2	3	4	5	6	7	8	9
Hirsch-length	1	3	6	10	15	21	28	36
N	2	4	8	16	28	58	114	278

Embed a τ -group G into $UT_N(\mathbb{Z})$.

Trivial lower bound:

$$rac{\mathit{N}(\mathit{N}-1)}{2} = \mathsf{Hirsch-length}(\mathit{UT}_\mathit{N}(\mathbb{Z})) \geq \mathsf{Hirsch-length}(\mathit{G})$$

For Nickel's embedding:

$$N \ge \mathsf{Hirsch}\mathsf{-length}(G) + 1$$

Nickel's experiments (2006) for embedding $UT_m(\mathbb{Z})$ into $UT_N(\mathbb{Z})$

m	2	3	4	5	6	7	8	9
Hirsch-length	1	3	6	10	15	21	28	36
N	2	4	8	16	28	58	114	278
2^{m-1}	2	4	8	16	32	64	128	256

Mal'cev bases for $UT_m(\mathbb{Z})$

 $\{ s_{i,j} \mid 1 \leq i < j \leq m \}$ is a Mal'cev basis (properly ordered).

Mal'cev bases for $UT_m(\mathbb{Z})$

Let $A = (a_1, ..., a_n)$ with $n = \frac{m(m-1)}{2}$ be the Mal'cev with

$$a_1 = egin{pmatrix} 1 & 1 & 0 & \cdots & 0 \ 1 & 0 & \cdots & 0 \ & & \ddots & dots \ & & 1 \end{pmatrix}, \ a_2 = egin{pmatrix} 1 & 0 & 0 & \cdots & 0 \ 1 & 1 & 0 & \cdots & 0 \ & & \ddots & dots \ & & & 1 \end{pmatrix}, \ a_3 = egin{pmatrix} 1 & 0 & 0 & \cdots & 0 \ 1 & 0 & \cdots & 0 \ & 1 & 1 & 0 & 0 \ & & \ddots & dots \ & & & \ddots & dots \ & & & 1 \end{pmatrix}, \ldots$$

$$a_i = egin{pmatrix} 1 & & & & \\ & 1 & & 1 & \\ & & 1 & \\ & 0 & & \ddots & \\ & & & 1 \end{pmatrix}$$
 the *i*-th matrix in this order

Mal'cev bases for $UT_m(\mathbb{Z})$

Let $B = (b_1, \dots, b_n)$ with $n = \frac{m(m-1)}{2}$ be the Mal'cev with

$$b_1 = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}, \ b_2 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}, \ b_3 = \begin{pmatrix} 1 & 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}, \ldots$$

Results on $UT_m(\mathbb{Z})$

Theorem

Nickel's embedding of $UT_m(\mathbb{Z})$ with Mal'cev basis A into $UT_N(\mathbb{Z})$ satisfies $N \geq 2^{\left\lfloor \frac{m}{2} \right\rfloor - 1}$.

Theorem

Nickel's embedding of $UT_m(\mathbb{Z})$ with Mal'cev basis B into $UT_{N'}(\mathbb{Z})$ satisfies $N' = \frac{m(m-1)}{2} + 1.$

Results on $UT_m(\mathbb{Z})$

Theorem

Nickel's embedding of $UT_m(\mathbb{Z})$ with Mal'cev basis A into $UT_N(\mathbb{Z})$ satisfies $N \geq 2^{\left\lfloor \frac{m}{2} \right\rfloor - 1}$.

Theorem

Nickel's embedding of $UT_m(\mathbb{Z})$ with Mal'cev basis B into $UT_{N'}(\mathbb{Z})$ satisfies $N' = \frac{m(m-1)}{2} + 1.$

Let $(a_1, ..., a_n)$ any ordering of the standard Mal'cev basis $\{s_{i,j} \mid 1 \le i < j \le m\}$ of $UT_m(\mathbb{Z})$.

Theorem

Nickel's embedding of $UT_m(\mathbb{Z})$ into $UT_N(\mathbb{Z})$ satisfies $N \leq 3^m$.

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{\mathsf{x}} s_{k,\ell}^{\mathsf{y}} = \begin{cases} s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} s_{i,\ell}^{\mathsf{x}\mathsf{y}} & \text{if } j = k, \\ s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} s_{k,j}^{-\mathsf{x}\mathsf{y}} & \text{if } i = \ell. \end{cases}$$

$$\mathsf{Recall:} \ s_{i,j} = \begin{pmatrix} 1 & & & \\ & 1 & & 1 & \\ & & \ddots & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{\mathsf{x}} s_{k,\ell}^{\mathsf{y}} = \begin{cases} s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} s_{i,\ell}^{\mathsf{x}\mathsf{y}} & \text{if } j = k, \\ s_{k,\ell}^{\mathsf{y}} s_{i,j}^{\mathsf{x}} s_{k,j}^{-\mathsf{x}\mathsf{y}} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & & & & \\ & 1 & & 1 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{x}s_{k,\ell}^{y} = \begin{cases} s_{k,\ell}^{y}s_{i,j}^{x} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{i,\ell}^{xy} & \text{if } j = k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{k,j}^{-xy} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & & & & \\ & 1 & & 1 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}} s_{2,3}^{x_{2,3}} \cdot s_{1,2}^{-1} \cdot s_{3,4}^{x_{3,4}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{\star} \cdots s_{2,m}^{\star} s_{1,m}^{\star}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{\mathsf{X}} s_{k,\ell}^{\mathsf{Y}} = \begin{cases} s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} s_{i,\ell}^{\mathsf{X}\mathsf{Y}} & \text{if } j = k, \\ s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} s_{k,j}^{-\mathsf{X}\mathsf{Y}} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & & & 1 & & \\ & 1 & & 1 & & \\ & & \ddots & & & \\ & 0 & & 1 & & \\ & & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}} \cdot s_{1,2}^{-1} \cdot s_{2,3}^{x_{2,3}} \cdot s_{1,3}^{x_{2,3}} \cdot s_{3,4}^{x_{3,4}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{t} \cdots s_{2,m}^{t} s_{1,m}^{t}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{x}s_{k,\ell}^{y} = \begin{cases} s_{k,\ell}^{y}s_{i,j}^{x} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{i,\ell}^{xy} & \text{if } j = k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{k,j}^{-xy} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & 1 & 1 \\ & 1 & 1 \\ & & \ddots & \\ & 0 & 1 & \\ & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}-1} s_{2,3}^{x_{2,3}} s_{3,4}^{x_{3,4}} \cdot s_{1,3}^{x_{2,3}} \cdot s_{1,4}^{x_{2,3}} s_{4,5}^{x_{4,5}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{*} \cdots s_{2,m}^{*} s_{1,m}^{*}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{\mathsf{X}} s_{k,\ell}^{\mathsf{Y}} = \begin{cases} s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} s_{i,\ell}^{\mathsf{X}\mathsf{Y}} & \text{if } j = k, \\ s_{k,\ell}^{\mathsf{Y}} s_{i,j}^{\mathsf{X}} s_{k,j}^{-\mathsf{X}\mathsf{Y}} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & 1 & 1 \\ & \ddots & \\ & 0 & 1 \\ & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}-1} s_{2,3}^{x_{2,3}} s_{3,4}^{x_{3,4}} s_{4,5}^{x_{4,5}} \cdot s_{1,5}^{x_{2,3}x_{3,4}x_{4,5}} \cdot s_{5,6}^{x_{5,6}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{*} \cdots s_{2,m}^{*} s_{1,m}^{*}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{x}s_{k,\ell}^{y} = \begin{cases} s_{k,\ell}^{y}s_{i,j}^{x} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{i,\ell}^{xy} & \text{if } j = k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{k,j}^{-xy} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & & & & \\ & 1 & & 1 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}-1} s_{2,3}^{x_{2,3}} \cdots s_{m-1,m}^{x_{m-1,m}} \cdot s_{1,m}^{x_{2,3} \cdots x_{m-1,m}} \cdot s_{1,3}^{t} \cdots s_{2,m}^{t} s_{1,m}^{t}$$

Compute

$$t_n^{a_1} = t_n^{s_{1,2}} = \prod_{i=2}^{m-1} x_i + P$$

by applying the commutation rules

$$s_{i,j}^{x}s_{k,\ell}^{y} = \begin{cases} s_{k,\ell}^{y}s_{i,j}^{x} & \text{if } i \neq \ell \text{ and } j \neq k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{i,\ell}^{xy} & \text{if } j = k, \\ s_{k,\ell}^{y}s_{i,j}^{x}s_{k,j}^{-xy} & \text{if } i = \ell. \end{cases}$$

Recall:
$$s_{i,j} = \begin{pmatrix} 1 & & & & \\ & 1 & & 1 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}$$

$$s_{1,2}^{x_{1,2}} \cdots s_{m-1,m}^{x_{m-1,m}} s_{1,3}^{x_{1,3}} \cdots s_{2,m}^{x_{2,m}} s_{1,m}^{x_{1,m}} \cdot s_{1,2}^{-1}$$

$$= s_{1,2}^{x_{1,2}-1} s_{2,3}^{x_{2,3}} \cdots s_{m-1,m}^{x_{m-1,m}} \cdot s_{1,3}^{\star} \cdots s_{2,m}^{\star} s_{1,m}^{x_{2,3} \cdots x_{m-1,m} + \star}$$

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

• Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$

$$t_n^{\mathsf{a}_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$
- Act on $t_n^{a_1}$ with elements $a_2^{\varepsilon_2} \cdots a_{m-1}^{\varepsilon_{m-1}}$ for $\varepsilon_i \in \{0, 1\}$.

$$t_n^{\mathsf{a}_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$
- Act on $t_n^{a_1}$ with elements $a_2^{\varepsilon_2} \cdots a_{m-1}^{\varepsilon_{m-1}}$ for $\varepsilon_i \in \{0, 1\}$.
- Hope: for every choice of the $\varepsilon_i \in \{0,1\}$ one new polynomial as basis element.

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$
- Act on $t_n^{a_1}$ with elements $a_2^{\varepsilon_2} \cdots a_{m-1}^{\varepsilon_{m-1}}$ for $\varepsilon_i \in \{0, 1\}$.
- Hope: for every choice of the $\varepsilon_i \in \{0,1\}$ one new polynomial as basis element.
- But: some of these cancel out, many are linearly dependent.

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$
- Act on $t_n^{a_1}$ with elements $a_2^{\varepsilon_2}\cdots a_{m-1}^{\varepsilon_{m-1}}$ for $\varepsilon_i\in\{\,0,1\,\}.$
- Hope: for every choice of the $\varepsilon_i \in \{0,1\}$ one new polynomial as basis element.
- But: some of these cancel out, many are linearly dependent.
- Therefore, act on $t_n^{a_1}$ with elements of the form $a_2^{\varepsilon_2} \cdots a_{\lfloor m/2 \rfloor}^{\varepsilon \lfloor m/2 \rfloor}$ with $\varepsilon_i \in \{0, 1\}$.

$$t_n^{a_1} = \prod_{i=2}^{m-1} x_i + P$$

- Recall: acting on $t_n^{a_1}$ = substituting variables by multiplication polynomials.
- Multiplication polynomials $x_i^{a_i} = x_i 1$
- Act on $t_n^{a_1}$ with elements $a_2^{\varepsilon_2}\cdots a_{m-1}^{\varepsilon_{m-1}}$ for $\varepsilon_i\in\{\,0,1\,\}.$
- Hope: for every choice of the $\varepsilon_i \in \{0,1\}$ one new polynomial as basis element.
- But: some of these cancel out, many are linearly dependent.
- Therefore, act on $t_n^{a_1}$ with elements of the form $a_2^{\varepsilon_2} \cdots a_{\lfloor m/2 \rfloor}^{\varepsilon \lfloor m/2 \rfloor}$ with $\varepsilon_i \in \{0, 1\}$.
- $\leadsto 2^{\left\lfloor \frac{m}{2} \right\rfloor 1}$ linearly independent polynomials, no cancellations.

Funda Gul and Armin Weiß

General upper bounds

Theorem

Let G be of nilpotency class c and k = rk(G/[G,G]). Then Nickel's embedding has dimension at most

$$\sum_{i=0}^{c-1} k^i + \operatorname{rk}(\Gamma_c(G)) < 2k^c.$$

Moreover, it has never larger dimension than Jennings' embedding.

General upper bounds

Theorem

Let G be of nilpotency class c and k = rk(G/[G,G]). Then Nickel's embedding has dimension at most

$$\sum_{i=0}^{c-1} k^i + \operatorname{rk}(\Gamma_c(G)) < 2k^c.$$

Moreover, it has never larger dimension than Jennings' embedding.

Compare: Jennings' embedding has dimension at most

$$\sum_{i=0}^{c} k^{i} < 2k^{c}$$

(Lo, Ostheimer, 1999)

General upper bounds

Theorem

Let G be of nilpotency class c and k = rk(G/[G,G]). Then Nickel's embedding has dimension at most

$$\sum_{i=0}^{c-1} k^i + \operatorname{rk}(\Gamma_c(G)) < 2k^c.$$

Moreover, it has never larger dimension than Jennings' embedding.

Compare: Jennings' embedding has dimension at most

$$\sum_{i=0}^{c} k^{i} < 2k^{c}$$

(Lo, Ostheimer, 1999)

$$F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$$

is the free nilpotent group with k generators and nilpotency class c.

23/26

$$F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$$

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)

$$\frac{1}{c}k^c + \mathcal{O}(\frac{1}{c}k^{c-1}).$$

$$F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$$

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)

$$\frac{1}{c}k^c + \mathcal{O}(\frac{1}{c}k^{c-1}).$$

Upper bound: $\operatorname{rk}(\Gamma_c(G)) + \sum_{i=1}^{c-1} k^i = \frac{1}{c} k^c + k^{c-1} + \mathcal{O}(k^{c-2}).$

$$F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$$

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)

$$\frac{1}{c}k^c + \mathcal{O}(\frac{1}{c}k^{c-1}).$$

Upper bound: $rk(\Gamma_c(G)) + \sum_{i=1}^{c-1} k^i = \frac{1}{c} k^c + k^{c-1} + \mathcal{O}(k^{c-2}).$

Thus, lower and upper bound lie only by a factor $1 + \frac{c}{k}$ apart (plus lower order terms).

$$F_{k,c} = \langle a_1, \dots, a_k \mid [x_1, \dots, x_{c+1}] = 1 \text{ for } x_1, \dots, x_{c+1} \in F_{k,c} \rangle$$

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)

$$\frac{1}{c}k^c + \mathcal{O}(\frac{1}{c}k^{c-1}).$$

Upper bound: $rk(\Gamma_c(G)) + \sum_{i=1}^{c-1} k^i = \frac{1}{c} k^c + k^{c-1} + \mathcal{O}(k^{c-2}).$

Thus, lower and upper bound lie only by a factor $1 + \frac{c}{k}$ apart (plus lower order terms).

Theorem (Lo, Ostheimer, 1999)

Jennings' embedding of $F_{k,c}$ has dimension exactly $\sum_{i=0}^{c} k^{i}$.

Let G and H be two τ -groups with Mal'cev bases (a_1, \ldots, a_m) and (a_{m+1}, \ldots, a_n) .

Let G and H be two τ -groups with Mal'cev bases (a_1, \ldots, a_m) and (a_{m+1}, \ldots, a_n) .

Then $(a_1, \ldots, a_m, a_{m+1}, \ldots, a_n)$ is a Mal'cev basis of $G \times H$.

Let G and H be two τ -groups with Mal'cev bases (a_1, \ldots, a_m) and (a_{m+1}, \ldots, a_n) .

Then $(a_1, \ldots, a_m, a_{m+1}, \ldots, a_n)$ is a Mal'cev basis of $G \times H$.

Proposition

Let M (resp. N) be the dimension of Nickel's embedding of G (resp. H) into $UT_M(\mathbb{Z})$ (resp. $UT_N(\mathbb{Z})$). Then Nickel's embedding of $G \times H$ has dimension

$$M + N - 1$$
.

Example

- $G = \mathbb{Z}^k$
- $H=\mathbb{Z}^c\rtimes_{\omega}\mathbb{Z}$ where the action \mathbb{Z} on \mathbb{Z}^c is defined by the matrix

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ & 1 & 1 & \ddots & \vdots \\ & & 1 & \ddots & 0 \\ & 0 & & \ddots & 1 \\ & & & & 1 \end{pmatrix}$$

Jennings' embedding has the following sizes

- for G: k+1
- for $H: 2^{\mathcal{O}(\sqrt{c})}$
- for $G \times H$: greater than $\binom{k+c}{c}$ (for k=c this is $\approx 4^k/\sqrt{k}$).

• Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?

- Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?
- Does every τ -group have a Mal'cev basis such that Nickel's algorithm produces a matrix representation of polynomial size? Conjecture: 'no'.

- Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?
- Does every τ -group have a Mal'cev basis such that Nickel's algorithm produces a matrix representation of polynomial size? Conjecture: 'no'.
- How can a better Mal'cev basis and better starting polynomials be found?

- Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?
- Does every τ -group have a Mal'cev basis such that Nickel's algorithm produces a matrix representation of polynomial size? Conjecture: 'no'.
- How can a better Mal'cev basis and better starting polynomials be found?
- Is the running time of Nickel's algorithm polynomial in the dimension of the matrix representation?

- Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?
- Does every τ -group have a Mal'cev basis such that Nickel's algorithm produces a matrix representation of polynomial size? Conjecture: 'no'.
- How can a better Mal'cev basis and better starting polynomials be found?
- Is the running time of Nickel's algorithm polynomial in the dimension of the matrix representation?
- ullet Does every au-group have a polynomial size matrix representation?

- Tight upper/lower bounds on Nickel's embedding of $UT_m(\mathbb{Z})$?
- Does every τ -group have a Mal'cev basis such that Nickel's algorithm produces a matrix representation of polynomial size? Conjecture: 'no'.
- How can a better Mal'cev basis and better starting polynomials be found?
- Is the running time of Nickel's algorithm polynomial in the dimension of the matrix representation?
- ullet Does every au-group have a polynomial size matrix representation?

Thank you!