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Definition

T-group = finitely generated torsion-free nilpotent group.
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Definition
T-group = finitely generated torsion-free nilpotent group.

Examples:
@ unitriangular matrices UT,(Z)
(upper triangular and diagonal entries 1)
@ Heisenberg groups

o free nilpotent groups
Fk,c = <31, - 1 | [Xl, L. ,XC+1] =1 for X1yee.y X1 € Fk,c>

where ([x1,. .., xc+1] = [[x1, - - -, Xc]s Xet1])

e (a,b,c,d,e|[a, b] = [b,c] = d?e, [a,c] = €3,
[e,x] = [d,x] = 1Vx)
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Embeddings of 7-Groups

Theorem (Jennings 1955)
Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.
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Embeddings of 7-Groups

Theorem (Jennings 1955)

Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.

Several other embeddings/algorithms:
o Merzlijakov and Kargapolov, 1979
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Embeddings of 7-Groups

Theorem (Jennings 1955)

Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.

Several other embeddings/algorithms:
o Merzlijakov and Kargapolov, 1979

@ Lo and Ostheimer, 1999 (computes Jennings' embedding — also for
polycyclic groups)
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Embeddings of 7-Groups

Theorem (Jennings 1955)

Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.

Several other embeddings/algorithms:
o Merzlijakov and Kargapolov, 1979

@ Lo and Ostheimer, 1999 (computes Jennings' embedding — also for
polycyclic groups)
@ DeGraaf and Nickel, 2002
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Embeddings of 7-Groups

Theorem (Jennings 1955)
Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.

Several other embeddings/algorithms:
o Merzlijakov and Kargapolov, 1979

@ Lo and Ostheimer, 1999 (computes Jennings' embedding — also for
polycyclic groups)

@ DeGraaf and Nickel, 2002

o Nickel, 2006
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Embeddings of 7-Groups

Theorem (Jennings 1955)
Every T-group can be embedded into UTy(Z) for some N € N.

The embedding is given by the G-action on QG /It where
I = {Zg g8 ‘ > gag=0 } is the augmentation ideal.

Several other embeddings/algorithms:
o Merzlijakov and Kargapolov, 1979
@ Lo and Ostheimer, 1999 (computes Jennings' embedding — also for
polycyclic groups)
@ DeGraaf and Nickel, 2002
o Nickel, 2006

Nickels seems to be the “best” for doing actual computations.
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Embeddings of 7-Groups

Why embeddings into matrices are useful:
@ lot known about matrices — linear algebra
@ computations are easy (word problem in Logspace,...)

@ basic building block for embedding polycyclic groups: interesting
for cryptographic purposes
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Embeddings of 7-Groups

Why embeddings into matrices are useful:
@ lot known about matrices — linear algebra
@ computations are easy (word problem in Logspace,...)

@ basic building block for embedding polycyclic groups: interesting
for cryptographic purposes

Desired properties properties of embeddings:
@ small dimension (little overhead when doing computations)
@ easy to compute
o undistorted (geometry is preserved)

@ preserves conjugacy etc.
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

Example

Foo =(a1,a | [[x,y],z] =1for x,y,z € F22)

@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

Foo =(a1,a | [[x,y],z] =1for x,y,z € F22)

@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

Funda Gul and Armin WeiB Nickel's Embedding



Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

Example
F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

doail ag a% dp =
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

Example
F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

8231333532 =
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

42 42
araja,atar = aiap|an, a1lasajan
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

42 4 2
araja,atap = aiapa,ajan|an. ai|
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

42 4.2
arajaajar = aiara,ajan|as, a1l
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

42 5.2
arajayajar = a1a;ajaz|az, ail
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

agalagafaz = ala%ag[ag, 31]1032[32, a1
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example

F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>

@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:

42 3.6 11
arajayajar = aja,|az, a1l

Funda Gul and Armin WeiB Nickel's Embedding



Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that
[ai, 3] € (Amax{ij}+1s--->an) -

Example
F2,2 — <31,32 | [[X,y],Z] =1 for X,y,Z € F2,2>
@ (a1,a2) is not a Mal'cev basis since apa; cannot be written as afa)

@ (a1, az,[a2, a1]) is a Mal'cev basis:
arajagatay = ajas|an, ar]™

° Fo=UT3(Z)=Hs= (a1, a, a3 | a2, a1] = a3, [a3, a1] =[a3, 2] =1)
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

@ The product of two elements can be written in the same fashion

Koo g% g = 9. 54
aj ay - ay ay = ay ajm.
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

@ The product of two elements can be written in the same fashion

XL g%n . g¥h . g¥n = Q91 ... 59
a) ay - a ay" = aj ajn.
The exponents q1, ..., g, are functions of xq,...,x, and

Yi,--->Yn
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Mal'cev coordinates

Let G be a 7-group with Mal'cev basis (a1,...,a,) = &.
@ Each g € G has a unique normal form
g=ay'--ay = Ead
with X = (x1,...,%,) € Z" and such that

[aia aj] € <amax{ NS EERRE an> .

@ The product of two elements can be written in the same fashion

aiq...a;;".a{ ...a%" :a?l...az"‘
The exponents q1, ..., g, are functions of xq,...,x, and
Y1,-..,Y¥n — the multiplication polynomials.

Theorem (P. Hall, 1957)

qi,--.,qn GZ[X1,~-->Xn,)/1a---7}/n]
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Nickel's Embedding

UTn(Z) < Aut(QV)
Embedding into UTn(Z) = description of G-action on Q"
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Nickel's Embedding

UTn(Z) < Aut(QV)
Embedding into UTn(Z) = description of G-action on Q"

The dual space of the group algebra QG

(QG)" ={f: QG — Q| f is linear}
={f:6-Q}={f:2"—- Q}

is a G-module:

fé(z)=f(z-g7 %) forge G, f € (QG)" and z € QG
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Nickel's Embedding

UTn(Z) < Aut(QV)
Embedding into UTn(Z) = description of G-action on Q"

The dual space of the group algebra QG

(QG)" ={f: QG — Q| f is linear}
={f:6-Q}={f:2"—- Q}

is a G-module:
fé(z)=f(z-g7 %) forge G, f € (QG)" and z € QG

The image of f € (QG)* under g with g7 = a* --- a}" can be
described with the multiplication polynomials g1, ..., gn:

fg(a;fl...a;gn) — f(aiq‘_.ai)(ng—l) — f(a?IH-ag")
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Nickel's Embedding

UTn(Z) < Aut(QV)
Embedding into UTn(Z) = description of G-action on Q"

The dual space of the group algebra QG

(QG)" ={f: QG — Q| f is linear}
={f:6-Q}={f:2"—- Q}

is a G-module:
fé(z)=f(z-g7 %) forge G, f € (QG)" and z € QG

The image of f € (QG)* under g with g7 = a* --- a}" can be
described with the multiplication polynomials g1, ..., gn:

FE(x1,. .., xn) = F(a% - ag 1) = f(qu,...,qn)-
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Nickel's Embedding

UTn(Z) < Aut(QV)
Embedding into UTn(Z) = description of G-action on Q"

The dual space of the group algebra QG

(QG)" ={f: QG — Q| f is linear}
={f:6-Q}={f:2"—- Q}

is a G-module:
fé(z)=f(z-g7 %) forge G, f € (QG)" and z € QG

The image of f € (QG)* under g with g7 = a* --- a}" can be
described with the multiplication polynomials g1, ..., gn:

FE(x1,. .., xn) = F(a% - ag 1) = f(qu,...,qn)-

~ compute f& = substitute multiplication polys into f.
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Nickel's Embedding

Let t; be the i'th coordinate function:

ti: G — 7

Xn

X1 )
ayt---ay =X

Well-def. since each g € G can be written uniquely as aj* - - - a)".
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Nickel's Embedding

Let t; be the i'th coordinate function:

ti: G — 7

Xn

X1 )
ayt---ay =X

Well-def. since each g € G can be written uniquely as aj* - - - a)".

ti € Qx1,..., x| C{F:Z" - Q} ={f: G — Q} =(QG6)"
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Nickel's Embedding

Let t; be the i'th coordinate function:

ti: G — 7
ayt---ay X
Well-def. since each g € G can be written uniquely as aj* - - - a)".

ti € Qx1,..., x| C{F:Z" - Q} ={f: G — Q} =(QG6)"

Lemma (Nickel, 2006)

Let f € Q[xq,...,Xs], then the G-submodule M = span(f®) of (QG)*
generated by f is finite-dimensional as a Q-vector space.
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Nickel's Embedding

Let t; be the i'th coordinate function:

ti: G — 7

Xn

X1 )
ayt---ay =X

Well-def. since each g € G can be written uniquely as aj* - - - a)".

ti € Qx1,..., x| C{F:Z" - Q} ={f: G — Q} =(QG6)"

Lemma (Nickel, 2006)

Let f € Q[xq,...,Xs], then the G-submodule M = span(f®) of (QG)*
generated by f is finite-dimensional as a Q-vector space.

Lemma (Nickel, 2006)

The submodule M = span <{ tiy .., tn }G) of (QG)* generated by

ti,..., t, is a finite dimensional faithful G-module. Moreover, it has a
basis such that the corresponding matrices are of unitriangular shape.

o’
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How to Compute the Embedding

7

Need to compute the action of G = a% - . - 2%

on

span({ t1,...,ts }G)
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How to Compute the Embedding

7

Need to compute the action of G = a% - . - 2%

on

span({ t1,...,t, }©) = span(---span({ t1,. .., t, }a%) . )a%)
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How to Compute the Embedding

7

Need to compute the action of G = a% - . - 2%

on

span({ t1,...,t, }©) = span(---span({ t1,. .., t, }a%) . )a%)

Find a basis:

o Start with coordinate functions t,...,t,
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How to Compute the Embedding

Need to compute the action of G = a% - - - aZ on

span({ t1,...,t, }©) = span(---span({ t1,. .., t, }a%) . )a%)

Find a basis:
o Start with coordinate functions t,...,t,
Zo .
e Extend {t1,...,t,} to a Q-basis B of span{ t,...,t, }°* (finite
dimensional):
o Compute polynomials qgl), ceey qf,l) with
X1 X -1 qgl) qul)
al...ann.al :al < ap

e substitute them into the polynomials of the previous step until no
new linearly independent polynomials appear.
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How to Compute the Embedding

7

Need to compute the action of G = a% - . - 2%

on

span({ t1,...,t, }©) = span(---span({ t1,. .., t, }a%) . )a%)

Find a basis:
o Start with coordinate functions t,...,t,
Zo .
e Extend {t1,...,t,} to a Q-basis B of span{ t,...,t, }°* (finite
dimensional):
o Compute polynomials qgl), ceey qf,l) with
X1 X -1 qgl) qul)
al...ann.al :al < ap

e substitute them into the polynomials of the previous step until no
new linearly independent polynomials appear.

e Extend B to a QQ-basis of span(BaZZ)
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Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1

is a Mal'cev basis for H.
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Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1
is a Mal'cev basis for H.

Goal: Find a Q-basis for the module generated by {t1, to, t3}.

X1 X2 X3 —1 __
31 32 83 . 81 =
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Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1
is a Mal'cev basis for H.

Goal: Find a Q-basis for the module generated by {t1, to, t3}.

X1 X2 _X3 —1 _ X1 .Xx2 —1 X3
dy’dy’dy’ +dy = dpdy +d; rag
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Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1
is a Mal'cev basis for H.

Goal: Find a Q-basis for the module generated by {t1, to, t3}.

X1 X2 _X3 -1 _ .x1 —1 X2 X2 X3
313283 +dy =ay +a; -a '83 '33

Funda Gul and Armin WeiB Nickel's Embedding



Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1
is a Mal'cev basis for H.

Goal: Find a Q-basis for the module generated by {t1, to, t3}.

X] X2 _X3 —1 _ x1—1_xo _x3+x0
dp ayds +ad; =apy ayd;
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Example: 3-dim Heisenberg group

Hs = UT3(Z) = Fop = (a1, a2, a3 | [a1, a3] =[a2, a3] = 1, [a1, a2] = a3)
1 10 1 00 1 01
ai=101 0 aa=1011 az=1|0 10
0 0 1 0 0 1 0 0 1
is a Mal'cev basis for H.

Goal: Find a Q-basis for the module generated by {t1, to, t3}.

X] X2 _X3 —1 _ x1—1_xo _x3+x0
31 32 33 . 81 = al 32 33
_ X1 X2 X3
x1—1 =t(at'ay’as’) — 1,
ar( X1 X2 X3\ __ _ X1 X2 X3
ti(a'ay’as’) =  x = to(a7'ay’ a3’),

x3+x = t3(aytayas’) + to(aytax’as’),
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Example: 3-dim Heisenberg group

Similarly,

X1 X2 X3

tla a'layay)=x1=1t

t2"’ aayay)=x—k=t—k-1

1% ay'ayay) =1 (constant polynomial)

=Xx3=13
= X1

t® =t

t2"” aytayay’

(
(
2(
t3% (ay'ay?
d
( xXp =t
(

)
X1 X2 X3)
)=
)

t3% aj'ayay)=x3—1l=t3—k-1

~> (t3, to, t1,1) is a Q-basis for the H-submodule. So H can be
embedded into UT4(Z).
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Example: 3-dim Heisenberg group

With the basis (t3, t2, t1,1):

110 0 100 O
31'—>0100 22'_>010—1
0 01 -1 001 O
00 0 1 0 00 1
100 -1
a3+—>0100
001 O
000 1
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Example: 3

For comparison: Jennings' embedding of H has dimension 7.

0 0 0 07
0-10 0
0 0 -10
1

-1
0

0
0

0 0 0 O

0

1
0

0
0

ao

)

1-10 00 0 0]

0

0-10 00

1
0 1
0 0 O

0 -10 -1

1

0 0 O

0 0001 0O

0 0 0 0O

0
1

1

0 0 00 0-1

1
0
0 0 O

1
0

0 0 0 0O

1

0 0 0 O
1

0 0 0 O

0 0 O
1

00 0 0 O

0
1

0

0 0 0 0 0 01

0 0 00 0O
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Nickel's Embedding
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Heisenberg groups

(2m + 1)-dimensional Heisenberg group with Mal'cev basis

(a1, -, 32m+1)

[ai,a]] = 1 for i = 2m+ 1 or |i —j| # m)

1 * * e %k *

1 0 ---0 %

H= R

1 0 «

0 1 %

1
1100 10100 10---010
100 10---0 10---0

a1 = s 2= o dm =

1 1 !
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Heisenberg groups

For the (2m + 1)-dimensional Heisenberg group

o Jennings' embedding has size 2m? +3m + 2,
o Nickel's embedding has size 2m + 2.
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Heisenberg groups

For the (2m + 1)-dimensional Heisenberg group
o Jennings' embedding has size 2m? +3m + 2,
o Nickel's embedding has size 2m + 2.

Proof.
For 1 < j < m, we have

. xj — k fori=j

a. ‘9? o o .

t) (&) =14 x fori #jandi #2m+1
X2m+1+kxm+j fori=2m+1

Form+1<;j<2m+1,

C R by
Xj fori #j
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Size (dimension) of embeddings

Embed a 7-group G into UTn(Z).

Trivial lower bound for arbitrary embeddings:

N(N -1
(2) = Hirsch-length(UTy(Z)) > Hirsch-length(G)
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Size (dimension) of embeddings

Embed a 7-group G into UTn(Z).

Trivial lower bound for arbitrary embeddings:

N(N -1
(2) = Hirsch-length(UTy(Z)) > Hirsch-length(G)
For Nickel's embedding:

N > Hirsch-length(G) + 1
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Size (dimension) of embeddings

Embed a 7-group G into UTn(Z).

Trivial lower bound for arbitrary embeddings:

N(N -1
(2) = Hirsch-length(UTy(Z)) > Hirsch-length(G)

For Nickel's embedding:

N > Hirsch-length(G) + 1

Nickel's experiments (2006) for embedding UT,,(Z) into UTn(Z)

m 2|34 5] 6| 7 8 9
Hirsch-length || 1 | 3 | 6 | 10 | 15|21 | 28| 36
N 2|14|18|16| 28|58 | 114 | 278
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Size (dimension) of embeddings

Embed a 7-group G into UTn(Z).

Trivial lower bound for arbitrary embeddings:

N(N -1
(2) = Hirsch-length(UTy(Z)) > Hirsch-length(G)

For Nickel's embedding:

N > Hirsch-length(G) + 1

Nickel's experiments (2006) for embedding UT,,(Z) into UTn(Z)

m 2[3]4] 5] 6] 7] 8] 9
Hirsch-length || 1 | 3 | 6 | 10 | 15|21 | 28| 36
N 2[4]8] 162858114 | 278
2m-1 |2]4]8]16]32] 64128256
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Size (dimension) of embeddings

25

== Sqrt(H)

=== L 0g(N)
Log(LB)

=== LOg (LM)

2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22
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Mal’cev bases for UT,,(Z)

Sij =

{sij | 1<i<j<m}isaMalcev basis (if properly ordered).
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Mal’cev bases for UT,,(Z)

Let A= (a..... a,) with n:w be the Mal'cev with
1100 100---0 1(1’88
10---0 110--0 li'L‘(.)O

a = T - ]y a3= ;-

[
_ .
—_

a; = the /-th matrix in this order
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Mal’cev bases for UT,,(Z)

Let B = (br, ..., b,) with n = ™71 e the Mal'cev with
110 0 100 0 1010--0
10 0 110--0 10 0
by = RS , bs = .
1 1 1
17
1 1
b, = 1 1 ‘ the i-th matrix in this order
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Results on UT,,(Z)

Nickel's embedding of UT,(Z) with Mal'cev basis A into UT\(Z)
satisfies N >olz]-t,

Theorem
Nickel's embedding of UT,(Z) with Mal'cev basis B into UTy:(Z)
m(m — 1) 1

satisfies N = >

Funda Gul and Armin WeiB Nickel's Embedding



Results on UT,,(Z)

Nickel's embedding of UT,(Z) with Mal'cev basis A into UT\(Z)

satisfies N > 2L?fl.

Nickel's embedding of UT,(Z) with Mal'cev basis B into UTy:(Z)
m(m — 1) 1
5 .

satisfies N =

Let (a1,...,an) any ordering of the standard Mal'cev basis
{S;J | 1<i<j<m}of UTy(Z).

Nickel's embedding of UT(Z) into UTy(Z) satisfies N < 3™,
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Proof ldea: Lower Bound

m—1
Compute 3 =t = H xi+ P
i=2

by applying the commutation rules

y - . .
koS if i £2/{ and j # k,
XY )y x>y T
SijSke = SkeSig Sie 1fI=k
A
koSt Sk if i =¢. .
1 1
Recall: s;; = :
0 1
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Proof ldea: Lower Bound

a 51,2
t3 =t =

Compute ;

by applying the commutation rules

y X

Skesi,j
x Y xy
SijSke = Sk£5 Siv
Xy
Sk,esi,j Sk,j

Write Xij for xy if Sij = ak

X2,m _X1,m

1,2 Xm—1,m _X1,3
’ 52m51m

X
512 " Sm_1m%1,3

51.2

m—1
H x;+ P
i=2

if i £/ and j # k,

if j =k,
ifi=4¢.
1
1 1
Recall: s;; = B
0 1
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Proof ldea: Lower Bound

Compute 3 =t = H xi+ P

by applying the commutation rules

siesf’j if i £/ and j # k,
SiiShe = Seesti sty ifi=k,
sk’es,-’j ska if i = )
1 1
Write x; ; for xi if s;j = ax Recall: s;; = 0 a )

X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
$12 " Sm—1.mS13 """ S2mSi,m " S12

X1,2 _X2.3 —1 X3,4 Xm—1,m * * *
=513%3 51254 " "Sm_1.mS13 " S2,mSL,m
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Proof ldea: Lower Bound

Compute t3 = t;? = H xi+ P

by applying the commutation rules

siesf’j if i £/ and j # k,
SiiShe = Seesti sty ifi=k,
sk’es,-’j ska if i =4. )
1 1
Write x; ; for xi if 5 = ay Recall: s;; = 0 a )

X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
$12 " Sm—1.mS13 """ S2mSi,m " S12
—1 X2.3 X23 X3,4 Xm—1,m _k

_ N
—512 S12°53 "S13 "534 " Sm—1.mS13" " S2mSL,m

)
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Proof ldea: Lower Bound

Compute 3 =t = H xi+ P

by applying the commutation rules

y X - - .
skes,-’j if i £2/{ and j # k,
x Yy e
Skt = \ SkaSiy Sie I I=k
Xy oieos
sk’es,-’j skJ if i = .
1 1
Write x; j for x if s;; = ax Recall: s;; = :
0 1
1
X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
S1,2 " Sm—1,mS1,3 " S2m Stym " 12
o x1p—1 x03 X34 X003 X23X34 _X45 Xm—1,m * * K
=512 5354 "S53 "S14 545 T Sm—1mS13 " S2mSim
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Proof ldea: Lower Bound

Compute 3 =t = H xi+ P

by applying the commutation rules

siesf’j if i £/ and j # k,
X y o . :
Skt = \ SkaSiy Sie I I=k
Xy es_
sk’es,-’j skJ if i = .
1 1
Write x; j for x if s;; = ax Recall: s;; = :
0 1
1
X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
S1,2 " Sm—1,mS1,3 " S2m Stym " 12
o x12—1 X203 X34 X45 X203X34X45 _X56 Xm—1,m _* * x
=515 5353455 515 "S56 " Sm—1,mS13" " 52,mS1,m

)
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Proof ldea: Lower Bound

Compute 3 =t = H xi+ P

by applying the commutation rules

y X - - .
skes,-’j if i £2/{ and j # k,
x Yy e
Skt = \ SkaSiy Sie I I=k
Xy oieos
sk’es,-’j skJ if i = .
1 1
Write x; j for x if s;; = ax Recall: s;; = :
0 1
1
X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
S15 " Sm—1,m513 " So,mSi,m " S12
x12—1 x23 Xm—1,m X223 Xm—-1m _% * K
=512 523 " Sm-1m Sim "513° " 52,mS1,m
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Proof ldea: Lower Bound

Compute 3 =t = H xi+ P

by applying the commutation rules

y X - . .
skes,-’j if i £2/{ and j # k,
X y . y . ._
SijSke = s”s Si if j =k,
Xy oieos
sk’es,-’j skJ if i =¢. .
1 1
Write x; j for x if s;; = ax Recall: s;; = :
0 1
1
X1,2 Xm—1,m _X1,3 X2.m _X1,m —1
S15 " Sm—1,m513 " So,mSi,m " S12
X1,2— 1 X2,3 Xm—1,m * * X2,3°"Xm— 1m+*

=512 523 Sm-1m 513" 2mS1m
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

@ Recall: acting on t7' = substituting variables by multiplication
polynomials.
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

@ Recall: acting on t7' = substituting variables by multiplication
polynomials.

e Multiplication polynomials x7 = x; — 1
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

@ Recall: acting on t7' = substituting variables by multiplication
polynomials.
e Multiplication polynomials x7 = x; — 1

@ Act on t2' with elements a5>---a. " for g; € {0,1}.
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

Recall: acting on t3' = substituting variables by multiplication
polynomials.

Multiplication polynomials x7 = x; — 1

Act on t2' with elements a2 ---a. " for g; € {0,1}.

Hope: for every choice of the €; € {0,1 } one new polynomial as
basis element.
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

Recall: acting on t3' = substituting variables by multiplication
polynomials.

Multiplication polynomials x7 = x; — 1

Act on t2' with elements a2 ---a. " for g; € {0,1}.

Hope: for every choice of the €; € {0,1 } one new polynomial as
basis element.

@ But: some of these cancel out, many are linearly dependent.
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

@ Recall: acting on t7' = substituting variables by multiplication
polynomials.

e Multiplication polynomials x7 = x; — 1

@ Act on t2' with elements a5>---a. " for g; € {0,1}.

@ Hope: for every choice of the €; € {0,1 } one new polynomial as
basis element.

@ But: some of these cancel out, many are linearly dependent.

@ Therefore, act on t2* with elements of the form 332 . ai#j/i with

ei€{0,1}.
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Proof ldea: Lower Bound

m—1
tht = H xi + P
i=2

@ Recall: acting on t7' = substituting variables by multiplication
polynomials.

e Multiplication polynomials x7 = x; — 1

@ Act on t2' with elements a5>---a. " for g; € {0,1}.

@ Hope: for every choice of the €; € {0,1 } one new polynomial as
basis element.

@ But: some of these cancel out, many are linearly dependent.

@ Therefore, act on t2* with elements of the form 332 . ai#j/i with

ei€{0,1}.

o ~ 2l%]-1 linearly independent polynomials, no cancellations.
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General upper bounds

Theorem

Let G be of nilpotency class ¢ and k = rk(G/[G, G]). Then Nickel's
embedding has dimension at most

c—1

> K +1k(Te(G)) < 2K°.

i=0
Moreover, it has never larger dimension than Jennings’ embedding.
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General upper bounds

Theorem

Let G be of nilpotency class ¢ and k = rk(G/[G, G]). Then Nickel's
embedding has dimension at most

c—1

> K +1k(Te(G)) < 2K°.

i=0
Moreover, it has never larger dimension than Jennings’ embedding.

Compare: Jennings' embedding has dimension at most

i k' < 2k€
i=0

(Lo, Ostheimer, 1999)
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General upper bounds

Theorem

Let G be of nilpotency class ¢ and k = rk(G/[G, G]). Then Nickel's
embedding has dimension at most

c—1

> K +1k(Te(G)) < 2K°.

i=0
Moreover, it has never larger dimension than Jennings’ embedding.

Compare: Jennings' embedding has dimension at most

EC: k' < 2k€
i=0

(Lo, Ostheimer, 1999)
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Free Nilpotent groups

Fk,c = <31,.. - | [Xl,... ,XC+1] =1 for X1,y Xet1 € Fk,c>

is the free nilpotent group with k generators and nilpotency class c.
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Free Nilpotent groups

Fk,c = <31, - D | [Xl, ... ,XC+1] =1 for X1,y Xet1 € Fk,c>
is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)
1

€

k€ + O(%kcfl).
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Free Nilpotent groups

Fk,c = <31, - D | [Xl, ... ,XC+1] =1 for X1,y Xet1 € Fk,c>
is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding

Lower bound: the Hirsch length (by Witt's formula)

1/<C + O(lkcfl).

1
Upper bound: rk(l¢(G)) + Z ki = Ckc + kL O(k2).
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Free Nilpotent groups

Fk,c = <31,.. - | [Xl,... ,XC+1] =1 for X1,y Xet1 € Fk,c>

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding
Lower bound: the Hirsch length (by Witt's formula)

1/<C + O(lkcfl).

1
Upper bound: rk(I'(G)) + Z ki = c + kL O(k2).

Thus, lower and upper bound lie only by a factor 1+ ¢ apart (plus
lower order terms).

Funda Gul and Armin WeiB Nickel's Embedding



Free Nilpotent groups

Fk,c = <31,.. - | [Xl,... ,XC+1] =1 for X1,y Xet1 € Fk,c>

is the free nilpotent group with k generators and nilpotency class c.

Dimension of Nickel's Embedding
Lower bound: the Hirsch length (by Witt's formula)

1/<C + O(lkcfl).

1
Upper bound: rk(I'(G)) + Z ki = c + kL O(k2).

Thus, lower and upper bound lie only by a factor 1+ ¢ apart (plus
lower order terms).

Theorem (Lo, Ostheimer, 1999)

Jennings’ embedding of Fy . has dimension exactly > 7 o k'
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Direct Products
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Direct Products

Let G and H be two 7-groups with Mal'cev bases (2. . ... am,) and
(8m+17 ey a,,)
Then (a1, ..., am, am+1 ,an) is a Mal'cev basis of G x H.
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Direct Products

Proposition
Let M (resp. N) be the dimension of Nickel's embedding of G (resp. H)
into UTy(Z) (resp. UTn(Z)). Then Nickel’s embedding of G x H has
dimension

M+ N-—1.
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Direct Products

o G=7ZF
@ H =7 %, Z where the action Z on Z¢ is defined by the matrix
110 ---0
1 1 ° :
1 0
0 1
1

Jennings’ embedding has the following sizes
o for G: k+1
o for H: 20(Ve)
e for G x H: greater than (kJCrC) (for k = c this is ~ 4% /\/k).

Nickel's Embedding

Funda Gul and Armin WeiB



Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?
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Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?

@ Does every 7-group have a Mal'cev basis such that Nickel's
algorithm produces a matrix representation of polynomial size?
Conjecture: 'no’.
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Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?

@ Does every 7-group have a Mal'cev basis such that Nickel's
algorithm produces a matrix representation of polynomial size?
Conjecture: 'no’.

@ How can a better Mal'cev basis and better starting polynomials be
found?
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Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?

@ Does every 7-group have a Mal'cev basis such that Nickel's
algorithm produces a matrix representation of polynomial size?
Conjecture: 'no’.

@ How can a better Mal'cev basis and better starting polynomials be
found?

@ Is the running time of Nickel's algorithm polynomial in the
dimension of the matrix representation?
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Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?

@ Does every 7-group have a Mal'cev basis such that Nickel's
algorithm produces a matrix representation of polynomial size?
Conjecture: 'no’.

@ How can a better Mal'cev basis and better starting polynomials be
found?

@ Is the running time of Nickel's algorithm polynomial in the
dimension of the matrix representation?

@ Does every 7-group have a polynomial size matrix representation?
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Open Questions

e Tight upper/lower bounds on Nickel's embedding of UT,(Z)?

@ Does every 7-group have a Mal'cev basis such that Nickel's
algorithm produces a matrix representation of polynomial size?
Conjecture: 'no’.

@ How can a better Mal'cev basis and better starting polynomials be
found?

@ Is the running time of Nickel's algorithm polynomial in the
dimension of the matrix representation?

@ Does every 7-group have a polynomial size matrix representation?

Thank you!
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