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Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set ¥ = ¥~1 C G.

» Word problem (WP): Given w € £*. Question: Is w =1 in G?

» Conjugacy problem: Given v, w € *.

Question: 3z € G such that zvz~1

= w?
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Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set ¥ = ¥~1 C G.

» Word problem (WP): Given w € £*. Question: Is w =1 in G?

» Conjugacy problem: Given v, w € *.
Question: 3z € G such that zvz™! = w?

» Compressed word problem: Given a straight-line program G which
produces a word w € ¥,
Question: Is w =1in G?
» Knapsack problem: Given p1,...,px, w € L*.
Question: Ixq,...,xx € N such that pi*--- pi* = w?

» Power word problem (POWERWP):
Given p1,...,px € X* and x1,...,xx € Z.
Question: pi* - pk =1in G?
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Why is the power word problem interesting?

The power word problem is natural:

» straightforward way of compression
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Why is the power word problem interesting?

The power word problem is natural:
» straightforward way of compression
» for abelian groups this is the usual way of encoding
» in nilpotent groups, every element can be expressed by a power
word of logarithmic length
» binary encoded matrices in SL(2,Z) yield power words over the
generators (Gurevich, Schupp 07)
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The power word problem helps

> to solve the knapsack problem in RAAGS (Lohrey, Zetsche, 15), .

» to understand the compressed word problem better:

» lower bounds
» better upper bounds in the special case.
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Complexity

Why parallel complexity?
» Finer classification of problems inside polynomial time.

» We cannot be faster than linear time on one processor,
but we can on many processors.

» Parallel computing is more and more important in the “real world”.
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Machine models:
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Parallel Complexity

Machine models:
» PRAMs (parallel random access machines)
> (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:
» input gates (has only outgoing edges)
» Boolean gates (and A, or V, not = having incoming and outgoing
edges)
> output gates (only incoming edges)

size = number of gates
depth = longest path from input to output gate
fan-in = number of input-wires per gate

NC = problems which can be solved by a family of circuits of
polynomial size and polylogarithmic depth and bounded fan-in.
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Parallel Complexity

Inside NC:

» NC' = solved by a family of circuits of depth O(log’ n) and
polynomial size with bounded fan-in (= in-degree) —, A, V gates.
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Parallel Complexity

Inside NC:
» NC' = solved by a family of circuits of depth O(log’ n) and
polynomial size with bounded fan-in (= in-degree) —, A, V gates.

Infinite hierarchy:

AC® C TC® C NC! C LOGSPACE C NC2C NC*C--- CNCCP.

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)
The word problem of linear groups is in LOGSPACE.

Inside NC*:
» ACY = solved by a family of circuits of constant depth and
polynomial size with unbounded fan-in =, A, V gates.
> TCO allows additionally majority gates:
Maj(w) = 1iff |w|; > |w], for w € {0,1}".

Armin WeiB Parallel Complexity



Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. J

Armin WeiB Parallel Complexity 7/25



Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. J

Use 0 to encode —1 and 1 for 1.

Armin WeiB Parallel Complexity 7/25



Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. J

Use 0 to encode —1 and 1 for 1. Let w € {0,1}",
w represents 0 in Z <= |w|; = |w|,
<= Maj(w) A Maj(—w)

Armin WeiB Parallel Complexity 7/25



Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. J

Use 0 to encode —1 and 1 for 1. Let w € {0,1}",
w represents 0 in Z <= |w|; = |w|,
<= Maj(w) A Maj(—w)

Armin WeiB Parallel Complexity 7/25



Word problem of Z

The word problem of Z with generators { +1,—1} is in TCO. J

Use 0 to encode —1 and 1 for 1. Let w € {0,1}",
w represents 0 in Z <= |w|; = |w|,
<= Maj(w) A Maj(—w)

Theorem (Myasnikov, W. 2017, Lohrey, W.)

If G is f.g. nilpotent or G = H1Z for H f.g. abelian, then
POWERWP(G) is in TCO.
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> For a formal language L C {0,1}*, AC%(L) allows additionally
oracle gates for L.

> [ € AC%(L) means L’ is AC?-(Turing)-reducible to L.
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> For a formal language L C {0,1}*, AC%(L) allows additionally
oracle gates for L.

> [ € AC%(L) means L’ is AC?-(Turing)-reducible to L.

» Every problem in TC? is AC®-reducible to Majority.
~~ Majority is TC-complete.

> TC® = AC°(WP(Z)) C AC*(WP(F))
> AC°(WP(F,)) € LOGSPACE
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Word problem of free groups
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Word problem of free groups

» The word problem of free groups is in LOGSPACE (Lipton,
Zalcstein, 1977).

» WP(F) is NC'-hard for k > 2 (Robinson, 1993).
» The compressed word problem is P-complete for k > 2 (Lohrey).

Theorem (Lohrey, W.)
The power word problem for free groups is in AC(WP(F,)).
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Overview: small circuit classes

AC Z/nZ with one monoid generator

TCO 7Z, linear solvable, free solvable
POWERWP(AbZ), POWERWP (nilpotent)

NC! = AC°(WP(As)) | finite non-solvable, regular languages
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Overview: small circuit classes

AC Z/nZ with one monoid generator

TCO 7Z, linear solvable, free solvable
POWERWP(AbZ), POWERWP (nilpotent)

NC! = AC°(WP(As)) | finite non-solvable, regular languages

virtually free, Baumslag-Solitar groups,

ACO(WP(FQ)) RAAGs, free products, graph products
POWERWP(free)

LOGSPACE linear groups, Grigorchuk group (not know to
be complete)

NC? hyperbolic groups (not know to be complete)

P polynomial time | compressed word problem of free groups,. ..
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Open Questions |

» s there a natural (non-group theoretic) problem which is
ACP(WP(F,))-complete?

> Is WP(F,) complete for AC°(WP(F3)) under many-one
reductions?

> Is there a AC°(WP(F,))-complete problem under many-one
reductions?
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Is there a natural (non-group theoretic) problem which is
ACP(WP(F,))-complete?

Is WP(F,) complete for AC°(WP(F3)) under many-one
reductions?

Is there a AC°(WP(F3))-complete problem under many-one
reductions?

How does the word problem of the Grigorchuk group relate to this
class?

Precise complexity for hyperbolic groups.
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Open Questions |

» s there a natural (non-group theoretic) problem which is
ACP(WP(F,))-complete?

> Is WP(F,) complete for AC°(WP(F3)) under many-one
reductions?

> Is there a AC°(WP(F,))-complete problem under many-one
reductions?

» How does the word problem of the Grigorchuk group relate to this
class?

» Precise complexity for hyperbolic groups.

Or even more challenging:
> Separation results: TC? # NC'? ACY(WP(F)) # NC'?. ..

> Can a non-solvable group have word problem in TC%?
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Power word problem in free groups

Power word problem: Given p1,...,px € X* and x1,...,xx € Z.
Question: pi*--- pk =1in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in AC(WP(F)).

Theorem (Lohrey, W.)

POWERWP(G+H) € AC°(POWERWP(G), POWERWP(H), WP(F,)).
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Power word problem in free groups

Power word problem: Given p1,...,px € X* and x1,...,xx € Z.
Question: pi*--- pk =1in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in AC(WP(F)).

Theorem (Lohrey, W.)

POWERWP(G+H) € AC°(POWERWP(G), POWERWP(H), WP(F,)).

Three steps:
» Preprocessing
» Make exponents small

» Solve regular word problem
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—*

(a b)lOOOa b—lOO blOOa b—lOO b1005 3 (a b)—lOOO
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—*

Example 1

(a b)lOOOa b—lOO blOOa b—lOO b1005 3 (a b)—lOOO

= 1

Example 2
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—*

Example 1

(a b)lOOOa b—lOO blOOa b—lOO b1005 3 (a b)—lOOO

= 1

Example 2
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Examples: Power word problem in free groups

Let F = F({a,b}) be the free group. Write 3 for a—*

Example 1

(a b)lOOOa b—lOO blOOa b—lOO b1005 3 (a b)—lOOO

= 1

Example 2

b123(b 3 3)1233_246[3_123(55 )1233123 7& 1

Example 3

(33)500 (5)9995 -1

(baaaba)®® (b)? (bbab)*® (babbab)i(ab)™?
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Q= {a, b, ab, ab, aab, aaB,...}
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma

Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.

» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-
~> also p and q.

> By (2), |p| = |ql.
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Preprocessing

Q) C X7 is set of non-empty words p with

(1) pis cyclically reduced,

(2) pis primitive,

(3) pis lexicographically minimal among all cyclic permutations of p
and p~! (i.e., in {uv ‘ vu=porvu=p L })

Lemma

Let p,q € Q and v a factor of p* and w a factor of ¢”.
If vw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

» By (1), v=w ! as words. ~» v has periods |p| and |q|.

» By Fine and Wilf's theorem v has period gcd(|p|, |qg])-
~> also p and q.
> By (2). |pl = gl

» By (3), since p is a factor of w !, we get p = q. O
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
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W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(baba)®® (b)2(bbab)*®® (babbab)(ab)™?

» Freely reduce the g;.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(baba)®® (b)2(bbab)*®® (babbab)(ab)™?
» Freely reduce the g;.
» Make each g; cyclically reduced.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(baba)®®(b)2b(ba)*® bba(bb)lab(ab)™t

» Freely reduce the g;.
» Make each g; cyclically reduced.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(baba)®®(b)2b(ba)*® bba(bb)tab(ab)™t

» Freely reduce the g;.
» Make each g; cyclically reduced.
> Make each g; primitive.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(b2)19% (5)2 b (53)°% b bz (b)2ab(ab) !

» Freely reduce the g;.
» Make each g; cyclically reduced.
> Make each g; primitive.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

(b2)19% (5)2 b (53)°% b bz (b)2ab(ab)

» Freely reduce the g;.

» Make each g; cyclically reduced.

> Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = qj or vu = qfl }

Armin WeiB Power word problem in free groups



Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

b(ab)1%b(b)2b(ab)™?®bba(b) 2ab(ab)™?!

» Freely reduce the g;.

» Make each g; cyclically reduced.

> Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = qj or vu = qfl }

This yields Sopys1 - - PR sn
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

b(ab)1%b(b)2b(ab)™?®bba(b) 2ab(ab)™?!

» Freely reduce the g;.

» Make each g; cyclically reduced.

> Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = qj or vu = qfl }
This yields Sopys1 - - PR sn

» Freely reduce the s;.
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Preprocessing

The first aim is to rewrite an input word gy* - - g»" in the form

W = spp;isy - PaSy with p; € Q and s; freely reduced. (1)

Given a power word v, a power word w of the form (1) with v = w
can be computed in AC°(WP(F)).

b(ab)%% b (b)2 b(ab)™2®a(b)2ab(ab)™?

» Freely reduce the g;.

» Make each g; cyclically reduced.

> Make each g; primitive.

» Make g; lex. minimal in {uv ‘ vu = qj or vu = qfl }
This yields Sopys1 - - PR sn

» Freely reduce the s;.
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in ACC(WP(F))).
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Input: w = wy --- w, with w; € Yyuxr-1L
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Freely reduced words can be computed in AC°(WP(F))).
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Define an equivalence relation ~ C {1,...,n} x {1,...,n} by
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =1l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =1l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =1l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =1l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

L wii=l ifi<j,
i~j <= w;=w and Wk . J
wii =l ifj<i.

~ i =~ j iff w; and w; are the same edge in the Cayley graph

1234567289
b b b b a a b
I
W4’8:1 ¥
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =1l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC°(WP(F))).

Proof.

Input: w = wy - w, with w; € ZU X1, Set Wij = Wif1- - W,.
Define an equivalence relation ~ C {1,...,n} x {1,...,n} by

wii=l ifi<j,
i~j <= w;=w and R . J

wii =l ifj<i.
~ i =~ j iff w; and w; are the same edge in the Cayley graph

4
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5 9
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1
Can be checked in AC°(WP(F)) for all pairs i,j whether i ~ j.
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Computing freely reduced words

Proof. (Contd.)

Define a partial map

7:{1,...,”}/%_){17"'7,7}/%

[i] — [j] if there is some j with w; = w; and

Wij—-1 =F 1 (resp. Wji—1 =F 1).
We have
> [i] = m <= w; and w; are inverse edges in the Cayley graph.
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Computing freely reduced words

Proof. (Contd.)

Define a partial map

7:{1,...,”}/%_){17"'7,7}/%

[i] — [j] if there is some j with w; = w; and

Wij—-1 =F 1 (resp. Wji—1 =F 1).
We have
> [i] = m <= w; and w; are inverse edges in the Cayley graph.
11— 11711

> <1 for all i

Armin WeiB Power word problem in free groups



Computing freely reduced words

Proof. (Contd.)
Define a partial map

7:{1,...,”}/%_){17"'7,7}/%

[i] — [j] if there is some j with w; = w; and

Wij—-1 =F 1 (resp. Wji—1 =F 1).

We have
» []=[] < w, and w; are inverse edges in the Cayley graph.
> ||[i]] = [[7]]| < 1foralli
> if [[{]| = [[/]|, all letters in [i] cancel

Power word problem in free groups
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Computing freely reduced words

Proof. (Contd.)

Define a partial map

7:{1,...,”}/%_){17"'7,7}/%

[i] — [j] if there is some j with w; = w; and

wij—1 =f L (resp. wj ;1 =F 1).
We have
[1] = m <= w; and w; are inverse edges in the Cayley graph.
JulEfl

if [[{]| = |[i]], all letters in [i] cancel

<1 for all i

if |[/]] > |[/]|, after any sequence of free reductions, there remains
one letter w; for some j € [i].
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Computing freely reduced words

Proof. (Contd.)

Define a partial map

7:{1,...,”}/%_){17"'7,7}/%

[i] — [j] if there is some j with w; = w; and

Wl',jfl —F 1 (reSp. M/J-,I'fl = 1)
We have
[1=1[] <= w; and w; are inverse edges in the Cayley graph.
1] = |[7]]| < 1 for all i

if [[{]| = |[i]], all letters in [i] cancel

>
| 4
>
» if [[{]| > |[/]|, after any sequence of free reductions, there remains

one letter w; for some j € [i].

Output all w; with j = max|[i] for some i with [[i]| > |[i]]| and delete the
other letters.
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;

Idea:

» Decrease all exponents of p; simultaneously.
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;

Idea:
» Decrease all exponents of p; simultaneously.

But: cannot delete them entirely:

al00ph 57100, £ 1 but 2% 2% =1
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Make exponents small

Now we have a “nice” instance
w = sopyisi- - Pa'sn with p; € Q and s; freely reduced.

We know that

> if a long factor of p}’ cancels with a factor of pJXJ then p; = p;

Idea:
» Decrease all exponents of p; simultaneously.

But: cannot delete them entirely:
al00ph 57100, £ 1 but 2% 2% =1
Nor down to 1:

al®Eba)ta % £ 1but al(aba)tath =1

Armin WeiB Power word problem in free groups 18/25



Make exponents small

Write w = ugp”*uy - - - pP’" up, for some p € Q such that u; does not
contain p with exponents.
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Make exponents small

Write w = ugp”*uy - - - pP’" up, for some p € Q such that u; does not
contain p with exponents.

Co
Cg]
5
6
c7

C6

i 4
Cs 4
Ca 2

(&)
\/3 /j/ 8
(&]

1
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Make exponents small

Write w = ugp”*uy - - - pP’" up, for some p € Q such that u; does not

contain p with exponents.
C9

Cg]
A ¥

c7
Co
Cs ! /54

\ \ "
Ca 2
C
o\ /

1
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Make exponents small

Write w = ugp”*uy - - - pP’" up, for some p € Q such that u; does not
contain p with exponents.

Co
Cg
A ¥
c7
Co

i 2
Cs 4

I\ Nk
N/ P

Y /

. N

Define S(w) = uop™ u1 - - - p* um where z; = y; — sign(y;) - Z dj
JEG
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Make exponents small

Proposition

w=fl <= S(W) =r L.
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Make exponents small

Proposition

w=fl <= S(W) =r L.

Proof of the main theorem.

> Preprocessing gives a “nice word” w = sppytsy -« pinsy.

» For all p € Q which appear in w, compute S(w) in parallel
(iterated addition ~ in TCO).

» Yields a word of polynomial length ~~ apply the ordinary word
problem.
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Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and H < G of finite index. Then POWERWP(G) is
NCL-many-one-reducible to POWERWP(H).
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Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and H < G of finite index. Then POWERWP(G) is
NCL-many-one-reducible to POWERWP(H).

Corollary
The power word problem of f.g. virtually free groups is in
ACY(WP(FR)).
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Further results on the power word problem
Theorem (Lohrey, W.)

Let G be f.g. and H < G of finite index. Then POWERWP(G) is
NCL-many-one-reducible to POWERWP(H).

Corollary

The power word problem of f.g. virtually free groups is in
AC°(WP(F)).

Theorem (Lohrey, W.)

Let G be either
» finite non-solvable
» f.g. free of rank > 2.
Then POWERWP(G ¢ Z) is coNP-complete.
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let Fo2Z = (a, b, t); follow Robinson's proof that WP(F5) is NC!-hard:
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1

o 1 ife()=0 o Ja ifa(X) =0,
where o'( )_{a £ o )Zlando( )—{1 fo(X) = 1.
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1

, )1 ifo(X)=0 ,
where o'( )_{a f o )Zlando( )

I
—
=
= =
Q Q9
—~
SN N
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= o

» FV G~ wpwg + padding
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1

a ifo(X)=1

» FV G~ wpwg + padding ~abwrbwgbba
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1

Loy |1 ifo(x)=0 vy )@ ife(X) =0
wherea( )—{a ifJ( )ZlandU( )_{1 ifU( ) 1.

» FV G~ wpwg + padding ~abwrbwgbba
» FAG ~ [wg,wg| + padding ~ albwgb, bbwgbb]a
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Proof: coNP hardness

CNF-UNSAT < POWERWP(F2 1 Z):
Let F22Z = (a, b, t); follow Robinson's proof that WP(F,) is NC*-hard:
» every CNF formula is an NC! circuit (logarithmic depth)

Given a formula F over variables {X1,..., X}, construct a word
WE € ({ail,bil}u{ ey , ey }) such that for
any valuation o : {X;,..., X} — {0,1}

O'(F) =0 < O'I(WF) =F 1

Loy |1 ifo(x)=0 vy )@ ife(X) =0
wherea( )—{a ifJ( )ZlandU( )_{1 ifU( ) 1.

» FV G~ wpwg + padding ~abwrbwgbba
» FAG ~ [wg,wg| + padding ~ albwgb, bbwgbb]a

» logarithmic depth ~~ polynomial size
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Proof: coNP hardness

> 17 = <a,b,t).
» For any assignment o : {X1,...,Xn} — {0,1}

o(F)=0 < o'(wr) =f 1

Evaluate wr for all valuations “in parallel”:
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Proof: coNP hardness

> 17 = <a,b,t).
» For any assignment o : {X1,...,Xn} — {0,1}

o(F)=0 < o'(wr) =f 1

Evaluate wr for all valuations “in parallel”:
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Proof: coNP hardness

> 17 = <a,b,t).
» For any assignment o : {X1,...,Xn} — {0,1}

o(F)=0 < o'(wr) =f 1

Evaluate wr for all valuations “in parallel”:

» Let p1,...,pm € N be pairwise coprime, M = [[ p;, M; = M/p;

> Vi (at--- MM =(a1,...1,...,a,1,...,1)
S~ ~— ———
pi pi—1 pi—1
M; times

~> a at positions =0 mod p;

Vi (tat---at)Mit™M = (1,a,...,a,...,1,a,...,a)
pi—1 pi—1 pi—1

~» a at positions Z 0 mod p;

» By the Chinese Remainder Theorem, this tests all valuations.
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Problem:

Let p,qg € Q and v a factor of p* and w a factor of ¢”.
Ifvw=1inF and |v| = |w| > |p| + |q| — 1, then p = q.

is NOT true anymore!!

Let p = ga with [g, a] = 1, then g* is a factor of p* and cancels with
g > but p # q!

~ need more restrictions on
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» Complexity of POWERWP in other groups:
» Grigochuk group — what is the maximal order of an element of
length n?
» other automaton groups?
» Baumslag-Solitar groups?

Thank you!
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