
QuickXsort: Efficient Sorting with
n log n − 1.399n + o(n) Comparisons on Average

Stefan Edelkamp1 Armin Weiß2

1TZI, Universität Bremen, Germany

2FMI, Universität Stuttgart, Germany

Moscow, June 11, 2014

Sorting

Task: Sort a sequence of elements of some totally ordered universe
using only pairwise comparisons.

QuickXsort

Hybrid algorithm: combination of Quicksort with some other
algorithm X.

QuickHeapsort (Cantone, Cincotti, CIAC 2000)
(improvements: Diekert, W., CSR 2013)

QuickWeakHeapsort (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

QuickMergesort (this talk)

Objectives:

Unified analysis of the average number of comparisons.

Pushing the limits towards optimal average case in place
sorting (n log n + κn + o(n) comparisons with κ as small as
possible).

QuickXsort

Hybrid algorithm: combination of Quicksort with some other
algorithm X.

QuickHeapsort (Cantone, Cincotti, CIAC 2000)
(improvements: Diekert, W., CSR 2013)

QuickWeakHeapsort (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

QuickMergesort (this talk)

Objectives:

Unified analysis of the average number of comparisons.

Pushing the limits towards optimal average case in place
sorting (n log n + κn + o(n) comparisons with κ as small as
possible).

QuickXsort

Hybrid algorithm: combination of Quicksort with some other
algorithm X.

QuickHeapsort (Cantone, Cincotti, CIAC 2000)
(improvements: Diekert, W., CSR 2013)

QuickWeakHeapsort (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

QuickMergesort (this talk)

Objectives:

Unified analysis of the average number of comparisons.

Pushing the limits towards optimal average case in place
sorting (n log n + κn + o(n) comparisons with κ as small as
possible).

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20
O(n) bits ω(1) -0.99 ≈ -1.24

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20
O(n) bits ω(1) -0.99 ≈ -1.24

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20
O(n) bits ω(1) -0.99 ≈ -1.24

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20
O(n) bits ω(1) -0.99 ≈ -1.24

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20
O(n) bits ω(1) -0.99 ≈ -1.24

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

QuickWeakHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with WeakHeapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickWeakHeapsort

Advantage: WeakHeapsort can be implemented with less
comparisons.

Other point of view: in-place implementation of
ExternalWeakHeapsort

QuickWeakHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with WeakHeapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickWeakHeapsort

Advantage: WeakHeapsort can be implemented with less
comparisons.

Other point of view: in-place implementation of
ExternalWeakHeapsort

QuickWeakHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with WeakHeapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickWeakHeapsort

Advantage: WeakHeapsort can be implemented with less
comparisons.

Other point of view: in-place implementation of
ExternalWeakHeapsort

QuickHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with Heapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickHeapsort

Advantage: during the sift down procedure only one comparison
per level in the heap is needed.
 n log n +O(n) comparisons on average

Other point of view: in-place implementation of
ExternalHeapsort

QuickHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with Heapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickHeapsort

Advantage: during the sift down procedure only one comparison
per level in the heap is needed.
 n log n +O(n) comparisons on average

Other point of view: in-place implementation of
ExternalHeapsort

QuickHeapsort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with Heapsort

≤ Pivot, sorted ≥ Pivot

3. Sort the other part recursively with QuickHeapsort

Advantage: during the sift down procedure only one comparison
per level in the heap is needed.
 n log n +O(n) comparisons on average

Other point of view: in-place implementation of
ExternalHeapsort

QuickMergesort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with Mergesort

≤ Pivot
≥ Pivot, sorted

3. Sort the other part recursively with QuickMergesort

Advantage: Can be implemented in place.

QuickMergesort

1. Partition

≥ Pivot
≤ Pivot

2. Sort one part with Mergesort

≤ Pivot
≥ Pivot, sorted

3. Sort the other part recursively with QuickMergesort

Advantage: Can be implemented in place.

Step 2: Mergesort in place

Pivot

After partitioning

Pivot

Apply Mergesort recursively

Apply Mergesort recursively

Merge

Pivot

Step 2: Mergesort in place

Pivot

After partitioning

Pivot

Apply Mergesort recursively

Apply Mergesort recursively

Merge

Pivot

Step 2: Mergesort in place

Pivot

After partitioning

Pivot

Apply Mergesort recursively

Apply Mergesort recursively

Merge

Pivot

Step 2: Mergesort in place

Pivot

After partitioning

Pivot

Apply Mergesort recursively

Apply Mergesort recursively

Merge

Pivot

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 45

5

55︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

5

5 55︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55

5

5︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 726 726 72 62 11 711 47 811 45 98 98 5 1012 8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 36 72

6 726 72 62

11

711

4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 72

6 72

6 72 62

11

711

4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 72

6 72

6 72 62

11

711

4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 72

6 72

62

11

711

4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11

711 4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11

711 4

7

8

11 4

5 9

8 98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11 711 4

7

8

11 45 98

98 5

1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11 711 4

7

8

11 4

5 98

98 5 1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11 711 4

7

811 45 98 98 5 1012

8 109 11 1254

︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition the array according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the remaining elements recursively with

QuickMergesort.

1 8 7 6 2 3 10 9 11 12 4

9 10 8 7 6 12 11 3 2 1 4

55 5

5

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 3

6 726 726 72

62

11 711 4

7

811 45 98 98 5 1012

8 109 11 1254︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickXsort

Advantage:

“External” algorithms can be implemented “internal”.

Assumptions:

draw the pivot as median of
√
n randomly selected elements

uniform distribution of all input permutations

Theorem (QuickXsort Average-Case)

If X is some sorting algorithm requiring at most n log n + cn + o(n)
comparisons on average, then QuickXsort needs at most
n log n + cn + o(n) comparisons on average.

QuickXsort

Advantage:

“External” algorithms can be implemented “internal”.

Assumptions:

draw the pivot as median of
√
n randomly selected elements

uniform distribution of all input permutations

Theorem (QuickXsort Average-Case)

If X is some sorting algorithm requiring at most n log n + cn + o(n)
comparisons on average, then QuickXsort needs at most
n log n + cn + o(n) comparisons on average.

QuickXsort

Advantage:

“External” algorithms can be implemented “internal”.

Assumptions:

draw the pivot as median of
√
n randomly selected elements

uniform distribution of all input permutations

Theorem (QuickXsort Average-Case)

If X is some sorting algorithm requiring at most n log n + cn + o(n)
comparisons on average, then QuickXsort needs at most
n log n + cn + o(n) comparisons on average.

Proof idea

General recurrence relation for the average number of comparisons:
(S(n) = n log n + cn + o(n) = bound for the average number of
comparisons of X)

T (n) ≤ Tpivot(n) + n +
n∑

k=1

(
Pr [pivot = k]

·max
{
T (k − 1) + S(n − k),T (n − k) + S(k − 1)

})

≈ Tpivot(n) + n + T (n/2) + S(n/2)

= n + n log(n/2) + cn + o(n).

It is very unlikely that the pivot is chosen outside the interval[
n
(
1
2 − ε

)
, n
(
1
2 + ε

)]
.

n
2

n
(
1
2 − ε

)
n
(
1
2 + ε

)

Proof idea

General recurrence relation for the average number of comparisons:
(S(n) = n log n + cn + o(n) = bound for the average number of
comparisons of X)

T (n) ≤ Tpivot(n) + n +
n∑

k=1

(
Pr [pivot = k]

·max
{
T (k − 1) + S(n − k),T (n − k) + S(k − 1)

})

≈ Tpivot(n) + n + T (n/2) + S(n/2)

= n + n log(n/2) + cn + o(n).

It is very unlikely that the pivot is chosen outside the interval[
n
(
1
2 − ε

)
, n
(
1
2 + ε

)]
.

n
2

n
(
1
2 − ε

)
n
(
1
2 + ε

)

Proof idea

General recurrence relation for the average number of comparisons:
(S(n) = n log n + cn + o(n) = bound for the average number of
comparisons of X)

T (n) ≤ Tpivot(n) + n +
n∑

k=1

(
Pr [pivot = k]

·max
{
T (k − 1) + S(n − k),T (n − k) + S(k − 1)

})
≈ Tpivot(n) + n + T (n/2) + S(n/2)

= n + n log(n/2) + cn + o(n).

It is very unlikely that the pivot is chosen outside the interval[
n
(
1
2 − ε

)
, n
(
1
2 + ε

)]
.

n
2

n
(
1
2 − ε

)
n
(
1
2 + ε

)

Worst case of QuickXsort

Worst case is Θ(n3/2).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

Choose some slowly decreasing function
δ(n) ∈ o(1) ∩ Ω(n−1/5), e. g., δ(n) = 1/ log n.

Whenever the pivot is more than n · δ(n) off the median,
choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QuickXsort worst case)

Let X be a sorting algorithm with at most n log n + cn + o(n)
comparisons on average and n log n +O(n) comparisons in the
worst case. Then QuickXsort (with the above modification)
performs at most n log n + cn + o(n) comparisons on average and
n log n +O(n) comparisons in the worst case.

Worst case of QuickXsort

Worst case is Θ(n3/2).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

Choose some slowly decreasing function
δ(n) ∈ o(1) ∩ Ω(n−1/5), e. g., δ(n) = 1/ log n.

Whenever the pivot is more than n · δ(n) off the median,
choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QuickXsort worst case)

Let X be a sorting algorithm with at most n log n + cn + o(n)
comparisons on average and n log n +O(n) comparisons in the
worst case. Then QuickXsort (with the above modification)
performs at most n log n + cn + o(n) comparisons on average and
n log n +O(n) comparisons in the worst case.

Worst case of QuickXsort

Worst case is Θ(n3/2).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

Choose some slowly decreasing function
δ(n) ∈ o(1) ∩ Ω(n−1/5), e. g., δ(n) = 1/ log n.

Whenever the pivot is more than n · δ(n) off the median,
choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QuickXsort worst case)

Let X be a sorting algorithm with at most n log n + cn + o(n)
comparisons on average and n log n +O(n) comparisons in the
worst case. Then QuickXsort (with the above modification)
performs at most n log n + cn + o(n) comparisons on average and
n log n +O(n) comparisons in the worst case.

Worst case of QuickXsort

Worst case is Θ(n3/2).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

Choose some slowly decreasing function
δ(n) ∈ o(1) ∩ Ω(n−1/5), e. g., δ(n) = 1/ log n.

Whenever the pivot is more than n · δ(n) off the median,
choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QuickXsort worst case)

Let X be a sorting algorithm with at most n log n + cn + o(n)
comparisons on average and n log n +O(n) comparisons in the
worst case. Then QuickXsort (with the above modification)
performs at most n log n + cn + o(n) comparisons on average and
n log n +O(n) comparisons in the worst case.

QuickXsort

Corollary

QuickWeakHeapsort performs at most n log n − 0.91n + o(n)
comparisons on average.

Corollary

QuickMergesort is an internal sorting algorithm that performs
at most n log n − 1.26n + o(n) comparisons on average.

(See e.g. Knuth, The Art of Computer Programming, Sorting and
Searching 5.2.4–13.)

QuickMergesort with base case

Further improvement for QuickMergesort:

Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:

(Binary) Insertionsort

MergeInsertion (Ford, Johnson, 1959)

Theorem

Let Z be some sorting algorithm with n log n + dn + o(n)
comparisons on average and at most O(n2) other operations (e.g.
moves). If base cases of size Θ(log n) are sorted with Z,
QuickMergesort needs at most n log n + dn + o(n)
comparisons on average and O(n log n) other instructions.

QuickMergesort with base case

Further improvement for QuickMergesort:

Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:

(Binary) Insertionsort

MergeInsertion (Ford, Johnson, 1959)

Theorem

Let Z be some sorting algorithm with n log n + dn + o(n)
comparisons on average and at most O(n2) other operations (e.g.
moves). If base cases of size Θ(log n) are sorted with Z,
QuickMergesort needs at most n log n + dn + o(n)
comparisons on average and O(n log n) other instructions.

QuickMergesort with base case

Further improvement for QuickMergesort:

Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:

(Binary) Insertionsort

MergeInsertion (Ford, Johnson, 1959)

Theorem

Let Z be some sorting algorithm with n log n + dn + o(n)
comparisons on average and at most O(n2) other operations (e.g.
moves). If base cases of size Θ(log n) are sorted with Z,
QuickMergesort needs at most n log n + dn + o(n)
comparisons on average and O(n log n) other instructions.

QuickMergesort with base case Insertionsort

Insert the elements successively into the already sorted sequence:

find the position of each element by binary search

make place for the new element by moving all elements by one

 quadratic number of moves.

Proposition (Average Case of Insertionsort)

Insertionsort needs n log n − (2 ln 2 + c(n)) · n +O(log n)
comparisons on average where c(n) ∈ [−0.005, 0.005].

Corollary

QuickMergesort with base case Insertionsort uses at most
n log n − 1.38n + o(n) comparisons on average.

QuickMergesort with base case Insertionsort

Insert the elements successively into the already sorted sequence:

find the position of each element by binary search

make place for the new element by moving all elements by one

 quadratic number of moves.

Proposition (Average Case of Insertionsort)

Insertionsort needs n log n − (2 ln 2 + c(n)) · n +O(log n)
comparisons on average where c(n) ∈ [−0.005, 0.005].

Corollary

QuickMergesort with base case Insertionsort uses at most
n log n − 1.38n + o(n) comparisons on average.

QuickMergesort with base case Insertionsort

Insert the elements successively into the already sorted sequence:

find the position of each element by binary search

make place for the new element by moving all elements by one

 quadratic number of moves.

Proposition (Average Case of Insertionsort)

Insertionsort needs n log n − (2 ln 2 + c(n)) · n +O(log n)
comparisons on average where c(n) ∈ [−0.005, 0.005].

Corollary

QuickMergesort with base case Insertionsort uses at most
n log n − 1.38n + o(n) comparisons on average.

QuickMergesort with base case Insertionsort

Insert the elements successively into the already sorted sequence:

find the position of each element by binary search

make place for the new element by moving all elements by one

 quadratic number of moves.

Proposition (Average Case of Insertionsort)

Insertionsort needs n log n − (2 ln 2 + c(n)) · n +O(log n)
comparisons on average where c(n) ∈ [−0.005, 0.005].

Corollary

QuickMergesort with base case Insertionsort uses at most
n log n − 1.38n + o(n) comparisons on average.

MergeInsertion

The algorithm:

1. Build pairs ai > bi .

2. Sort the values a1,...,abn/2c recursively.

3. Insert the elements b1 . . . , bdn/2e into the linear chain by
binary insertion following a special ordering.

Theorem (Hadian 1969, Knuth 1973)

MergeInsertion needs at most n log n − 1.329n +O(log n)
comparisons in the worst case.

QuickMergesort with base case MergeInsertion

Theorem (Average Case of MergeInsertion)

A simplified version of MergeInsertion needs at most
n log n − 1.3999 · n +O(log n) comparisons on average.

Corollary

QuickMergesort with MergeInsertion as base case needs
at most n log n − 1.3999n + o(n) comparisons on average.

QuickMergesort with base case MergeInsertion

Theorem (Average Case of MergeInsertion)

A simplified version of MergeInsertion needs at most
n log n − 1.3999 · n +O(log n) comparisons on average.

Corollary

QuickMergesort with MergeInsertion as base case needs
at most n log n − 1.3999n + o(n) comparisons on average.

Experiments on Insertionsort and MergeInsertion

−1.45

−1.44

−1.43

−1.42

−1.41

−1.4

−1.39

−1.38

−1.37

−1.36

−1.35

2
10

2
12

2
14

2
16

(N
u
m

b
e
r

o
f

e
le

m
e
n
t

c
o
m

p
a
ri

so
n
s

−
 n

 l
o
g
 n

)
/

n

n [logarithmic scale]

Insertionsort

Simple MergeInsertion

MergeInsertion

Lower Bound

Sorting with n log n + κn comparisons.

Experimental behavior of the linear term of QuickXsort

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

2
14

2
16

2
18

2
20

2
22

2
24

2
26

(N
u
m

b
e
r

o
f

e
le

m
e
n
t

c
o
m

p
a
ri

so
n
s

−
 n

 l
o
g
 n

)
/

n

n [logarithmic scale]

STL Introsort (Quicksort)

Quicksort Median of Sqrt

STL Mergesort

QuickWeakHeapsort

QuickMergesort

QuickMergesort (MI)

Lower Bound

Sorting with n log n + κn comparisons.

Running times of QuickXsort and other algorithms

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2
14

2
16

2
18

2
20

2
22

2
24

2
26

E
x
e
c
u
ti

o
n
 t

im
e
 p

e
r

e
le

m
e
n
t

[µ
s]

n [logarithmic scale]

QuickWeakHeapsort

QuickMergesort (MI)

Quicksort Median of Sqrt

QuickMergesort

STL Mergesort

STL Introsort (Quicksort)

Running time with integer data.

Running times of QuickXsort and other algorithms

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

2
12

2
14

2
16

2
18

2
20

2
22

E
x
e
c
u
ti

o
n
 t

im
e
 p

e
r

e
le

m
e
n
t

[µ
s]

n [logarithmic scale]

QuickWeakHeapsort

STL Introsort (Quicksort)

QuickMergesort (MI)

Quicksort Median of Sqrt

STL Mergesort

QuickMergesort

Running time with more expensive comparisons simulated by calculating
the logarithm of one operand in every comparison.

Constant-factor-optimal sorting with n log n + κn + o(n)
comparisons.

Mem. κ Worst κ Avg. κ Exper.

Information theo. lower bound -1.44 -1.44

BottomUpHeapsort O(1) ω(1) – [0.35,0.39]
QuickHeapsort O(1) ω(1) -0.03 ≈ 0.20

O(n) bits ω(1) -0.99 ≈ -1.24
WeakHeapsort O(n) bits 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort O(n) -0.91 -0.91 -0.91
ExternalWeakHeapsort # O(n) -0.91 -1.26* –

Mergesort O(n) -0.91 -1.26 –
InPlaceMergesort O(1) -1.25 – –

Insertionsort O(1) -0.91 † -1.38 # [-1.38,-1.39]
MergeInsertion O(1) -1.32 † -1.3999 # [-1.43,-1.41]

QuickWeakHeapsort O(n) bits O(1) # -0.91# [-1.13,-1.25]
QuickMergesort # O(1) O(1) -1.26 [-1.29,-1.27]

QuickMergesort (IS) # O(1) O(1) -1.38 –
QuickMergesort (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

in this paper, – not analyzed,

* only for n = 2k , † needs Θ(n2) moves.

Conclusion and open problems

Generic analysis of QuickXsort.

QuickMergesort is highly competitive.

Variant with base cases needs ≤ n log n − 1.3999n + o(n)
comparisons on average.

Exact average case of MergeInsertion?

How close can one get to the lower bound?

Thank you!

Conclusion and open problems

Generic analysis of QuickXsort.

QuickMergesort is highly competitive.

Variant with base cases needs ≤ n log n − 1.3999n + o(n)
comparisons on average.

Exact average case of MergeInsertion?

How close can one get to the lower bound?

Thank you!

Conclusion and open problems

Generic analysis of QuickXsort.

QuickMergesort is highly competitive.

Variant with base cases needs ≤ n log n − 1.3999n + o(n)
comparisons on average.

Exact average case of MergeInsertion?

How close can one get to the lower bound?

Thank you!

