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Task: Sort a sequence of elements of some totally ordered universe
using only pairwise comparisons.
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Hybrid algorithm: combination of QUICKSORT with some other
algorithm X.

e QUICKHEAPSORT (Cantone, Cincotti, CIAC 2000
(improvements: Diekert, W., CSR 2013

)

)

e QUICKWEAKHEAPSORT  (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

)

e QUICKMERGESORT (this talk

Objectives:
@ Unified analysis of the average number of comparisons.

@ Pushing the limits towards optimal average case in place
sorting (nlog n+ xkn+ o(n) comparisons with s as small as
possible).



Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.

Information theo. lower bound -1.44 -1.44
QUICKHEAPSORT o(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24

— not analyzed,
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Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Information theo. lower bound
QUICKHEAPSORT

BorTOMUPHEAPSORT
WEAKHEAPSORT
RELAXEDWEAKHEAPSORT

MERGESORT
INPLACEMERGESORT
INSERTIONSORT
MERGEINSERTION

Mem x Worst
-1.44
o(1) w(1)
O(n) bits w(1)
O(1) w(1)
O(n) bits 0.09
O(n) 091
O(n) -0.91
o(1) -1.25
(1) -0.91 }
o(1) | -1321%

— not analyzed,

K Avg.
-1.44
-0.03
-0.99

-0.91

-1.26

138 #
-1.3999 #

K Exper.

~ 0.20
~ -1.24
[0.35,0.39]
[-0.46,-0.42]
-0.91

[-1.38,-1.39]
[-1.43-1.41]
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1. Partition

< Pivot

> Pivot }

2. Sort one part with MERGESORT

< Pivot
| — S Pivot, sorted |

3. Sort the other part recursively with QUICKMERGESORT

0 ]

Advantage: Can be implemented in place.
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1. Partition the array according to some pivot element.
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QUICKXSORT

Advantage:
e “External” algorithms can be implemented “internal”.

Assumptions:
@ draw the pivot as median of y/n randomly selected elements

@ uniform distribution of all input permutations

Theorem (QUICKXSORT Average-Case)

If X is some sorting algorithm requiring at most nlog n+ cn+ o(n)
comparisons on average, then QUICKXSORT needs at most
nlog n+ cn+ o(n) comparisons on average.
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T(n) < Tpivor(n) +n+ Y (Pr [pivot = K]
k=1

-max{ T(k—1)+ S(n— k), T(n— k) + S(k — 1) }>
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General recurrence relation for the average number of comparisons:
(S(n) = nlog n+ cn+ o(n) = bound for the average number of
comparisons of X)

T(n) < Tpivor(n) +n+ Y (Pr [pivot = K]
k=1
-max{ T(k—1)+S(n—k), T(n—k)+ S(k—1) })
~ Tpivot(n) +n+ T(n/2) + S(n/z)
= n+ nlog(n/2) + cn+ o(n).

It is very unlikely that the pivot is chosen outside the interval
1 1
[n(z—¢).n(z+¢)]:

NI

|
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Worst case of QUICKXSORT

Worst case is ©(n3/?).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

@ Choose some slowly decreasing function
5(n) € o(1)NQ(n~1/%), e.g., §(n) =1/ log n.
@ Whenever the pivot is more than n - §(n) off the median,

choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QUICKXSORT worst case)

Let X be a sorting algorithm with at most nlog n+ cn + o(n)
comparisons on average and nlog n+ O(n) comparisons in the
worst case. Then QUICKXSORT (with the above modification)
performs at most nlog n+ cn + o(n) comparisons on average and
nlog n+ O(n) comparisons in the worst case.




QUICKXSORT

QUICKWEAKHEAPSORT performs at most nlogn — 0.91n + o(n)
comparisons on average.

QUICKMERGESORT s an internal sorting algorithm that performs
at most nlogn — 1.26n + o(n) comparisons on average.

(See e.g. Knuth, The Art of Computer Programming, Sorting and
Searching 5.2.4-13.)
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QUICKMERGESORT with base case

Further improvement for QUICKMERGESORT:

@ Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:

o (Binary) INSERTIONSORT

e MERGEINSERTION (Ford, Johnson, 1959)

Let Z be some sorting algorithm with nlog n+ dn + o(n)
comparisons on average and at most O(n?) other operations (e.g.
moves). If base cases of size ©(log n) are sorted with Z,
QUICKMERGESORT needs at most nlog n -+ dn + o(n)
comparisons on average and O(nlog n) other instructions.
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@ find the position of each element by binary search

@ make place for the new element by moving all elements by one
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QUICKMERGESORT with base case INSERTIONSORT

Insert the elements successively into the already sorted sequence:
@ find the position of each element by binary search
@ make place for the new element by moving all elements by one

~> quadratic number of moves.

Proposition (Average Case of INSERTIONSORT)

INSERTIONSORT needs nlogn — (2In2 + ¢(n)) - n+ O(log n)
comparisons on average where c(n) € [—0.005,0.005].

QUICKMERGESORT with base case INSERTIONSORT uses at most
nlog n — 1.38n + o(n) comparisons on average.




MERGEINSERTION

The algorithm:
1. Build pairs a; > b;.
2. Sort the values ay,...,a,/2) recursively.

3. Insert the elements by ..., by, 27 into the linear chain by
binary insertion following a special ordering.

Theorem (Hadian 1969, Knuth 1973)

MERGEINSERTION needs at most nlog n — 1.329n + O(log n)
comparisons in the worst case.




QUICKMERGESORT with base case MERGEINSERTION

Theorem (Average Case of MERGEINSERTION)

A simplified version of MERGEINSERTION needs at most
nlogn—1.3999 - n + O(log n) comparisons on average.




QUICKMERGESORT with base case MERGEINSERTION

Theorem (Average Case of MERGEINSERTION)

A simplified version of MERGEINSERTION needs at most
nlogn—1.3999 - n + O(log n) comparisons on average.

QUICKMERGESORT with MERGEINSERTION as base case needs
at most nlogn — 1.3999n + o(n) comparisons on average.




Experiments on INSERTIONSORT and MERGEINSERTION
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Experimental behavior of the linear term of Quic
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Sorting with nlog n + kn comparisons.



Running times of QUICKXSORT and other algorithms
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Running times of QUICKXSORT and other algorithms
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Running time with more expensive comparisons simulated by calculating
the logarithm of one operand in every comparison.



Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.
Information theo. lower bound -1.44 -1.44
BoTTOMUPHEAPSORT 0(1) w(1) - [0.35,0.39]
QUICKHEAPSORT O(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24
WEAKHEAPSORT O(n) bits 0.09 - [-0.46,-0.42]
RELAXEDWEAKHEAPSORT O(n) -0.91 -0.91 -0.91
EXTERNALWEAKHEAPSORT # O(n) -0.91 -1.26* -
MERGESORT O(n) -0.91 -1.26 -
INPLACEMERGESORT O(1) -1.25 - -
INSERTIONSORT (1) -0.91 } -1.38 # | [-1.38,-1.39]
MERGEINSERTION o(1) -1.32 1 -1.3999 # | [-1.43,-1.41]
QUICKWEAKHEAPSORT O(n) bits | O(1) # -0.91# [-1.13,-1.25]
QUICKMERGESORT # o(1) o(1) -1.26 [-1.29,-1.27]
QUICKMERGESORT (IS) # O(1) O(1) -1.38 -
QUICKMERGESORT (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

#£ in this paper, — not analyzed,

* only for n = 2%, 1 needs ©(n?) moves.



Conclusion and open problems

@ Generic analysis of QUICKXSORT.
@ QuickMergesort is highly competitive.

@ Variant with base cases needs < nlogn —1.3999n + o(n)
comparisons on average.



Conclusion and open problems

@ Generic analysis of QUICKXSORT.

@ QuickMergesort is highly competitive.

@ Variant with base cases needs < nlogn —1.3999n + o(n)
comparisons on average.

@ Exact average case of MERGEINSERTION?

@ How close can one get to the lower bound?



Conclusion and open problems

Generic analysis of QUICKXSORT.

QuickMergesort is highly competitive.

Variant with base cases needs < nlog n — 1.3999n + o(n)
comparisons on average.

Exact average case of MERGEINSERTION?

How close can one get to the lower bound?

Thank you!



