QuickXsort: Efficient Sorting with

nlogn —1.399n + o(n) Comparisons on Average

Stefan Edelkamp! Armin WeiB?

LTZI, Universitit Bremen, Germany

2FMI, Universitat Stuttgart, Germany

Moscow, June 11, 2014

Task: Sort a sequence of elements of some totally ordered universe
using only pairwise comparisons.

QUICKXSORT

Hybrid algorithm: combination of QUICKSORT with some other
algorithm X.

e QUICKHEAPSORT (Cantone, Cincotti, CIAC 2000
(improvements: Diekert, W., CSR 2013

)

)

e QUICKWEAKHEAPSORT (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

)

e QUICKMERGESORT (this talk

QUICKXSORT

Hybrid algorithm: combination of QUICKSORT with some other
algorithm X.

e QUICKHEAPSORT (Cantone, Cincotti, CIAC 2000
(improvements: Diekert, W., CSR 2013

)

)

e QUICKWEAKHEAPSORT (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

)

e QUICKMERGESORT (this talk

Objectives:

@ Unified analysis of the average number of comparisons.

QUICKXSORT

Hybrid algorithm: combination of QUICKSORT with some other
algorithm X.

e QUICKHEAPSORT (Cantone, Cincotti, CIAC 2000
(improvements: Diekert, W., CSR 2013

)

)

e QUICKWEAKHEAPSORT (Edelkamp, Stiegeler, WAE 2000)
(improvements: see proceedings)

)

e QUICKMERGESORT (this talk

Objectives:
@ Unified analysis of the average number of comparisons.

@ Pushing the limits towards optimal average case in place
sorting (nlog n+ xkn+ o(n) comparisons with s as small as
possible).

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.

Information theo. lower bound -1.44 -1.44
QUICKHEAPSORT o(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24

— not analyzed,

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.
Information theo. lower bound -1.44 -1.44
QUICKHEAPSORT o(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24
BOoTTOMUPHEAPSORT O(1) w(1) - [0.35,0.39]

— not analyzed,

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.
Information theo. lower bound -1.44 -1.44
QUICKHEAPSORT o(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24
BOoTTOMUPHEAPSORT O(1) w(1) - [0.35,0.39]
WEAKHEAPSORT O(n) bits 0.09 - [-0.46,-0.42]
RELAXEDWEAKHEAPSORT O(n) -0.91 -0.91 -0.91

— not analyzed,

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.
Information theo. lower bound -1.44 -1.44
QUICKHEAPSORT o(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24
BOoTTOMUPHEAPSORT O(1) w(1) - [0.35,0.39]
WEAKHEAPSORT O(n) bits 0.09 - [-0.46,-0.42]
RELAXEDWEAKHEAPSORT O(n) -0.91 -0.91 -0.91
MERGESORT O(n) -0.91 -1.26 -
INPLACEMERGESORT O(1) -1.25 - -

— not analyzed,

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Information theo. lower bound
QUICKHEAPSORT

BorTOMUPHEAPSORT
WEAKHEAPSORT
RELAXEDWEAKHEAPSORT

MERGESORT
INPLACEMERGESORT
INSERTIONSORT
MERGEINSERTION

Mem x Worst
-1.44
o(1) w(1)
O(n) bits w(1)
O(1) w(1)
O(n) bits 0.09
O(n) 091
O(n) -0.91
o(1) -1.25
(1) -0.91 }
o(1) | -1321%

— not analyzed,

K Avg.
-1.44
-0.03
-0.99

-0.91

-1.26

138 #
-1.3999 #

K Exper.

~ 0.20
~ -1.24
[0.35,0.39]
[-0.46,-0.42]
-0.91

[-1.38,-1.39]
[-1.43-1.41]

QUICKWEAKHEAPSORT

1. Partition

< Pivot

’ > Pivot }

2. Sort one part with WEAKHEAPSORT

% > Pivot ‘

3. Sort the other part recursively with QUICKWEAKHEAPSORT

0]

QUICKWEAKHEAPSORT

1. Partition

< Pivot

’ > Pivot }

2. Sort one part with WEAKHEAPSORT

% > Pivot ‘

3. Sort the other part recursively with QUICKWEAKHEAPSORT

0]

Advantage: WeakHeapsort can be implemented with less
comparisons.

QUICKWEAKHEAPSORT

1. Partition

’ > Pivot } = Pivot

2. Sort one part with WEAKHEAPSORT

% > Pivot ‘

3. Sort the other part recursively with QUICKWEAKHEAPSORT

0]

Advantage: WeakHeapsort can be implemented with less
comparisons.

Other point of view: in-place implementation of
EXTERNALWEAKHEAPSORT

QUICKHEAPSORT

1. Partition

< Pivot

’ > Pivot }

2. Sort one part with HEAPSORT

% > Pivot ‘

3. Sort the other part recursively with QUICKHEAPSORT

0]

QUICKHEAPSORT

1. Partition

’ > Pivot } < Pivot

2. Sort one part with HEAPSORT

| SPivot soted | > Pivot |

3. Sort the other part recursively with QUICKHEAPSORT

0]

Advantage: during the sift down procedure only one comparison
per level in the heap is needed.
~ nlog n+ O(n) comparisons on average

QUICKHEAPSORT

1. Partition

’ > Pivot } = Pivot

2. Sort one part with HEAPSORT

% > Pivot ‘

3. Sort the other part recursively with QUICKHEAPSORT

0]

Advantage: during the sift down procedure only one comparison
per level in the heap is needed.
~ nlog n+ O(n) comparisons on average

Other point of view: in-place implementation of
EXTERNALHEAPSORT

QUICKMERGESORT

1. Partition

< Pivot

> Pivot }

2. Sort one part with MERGESORT

< Pivot
| — S Pivot, sorted |

3. Sort the other part recursively with QUICKMERGESORT

0]

QUICKMERGESORT

1. Partition

< Pivot

> Pivot }

2. Sort one part with MERGESORT

< Pivot
| — S Pivot, sorted |

3. Sort the other part recursively with QUICKMERGESORT

0]

Advantage: Can be implemented in place.

Step 2: Mergesort in place
After partitioning ’ l—‘

Pivot

Step 2: Mergesort in place
After partitioning ’ l—‘

Pivot

Apply MERGESORT recursively ’ /‘1

Pivot

]

Step 2: Mergesort in place
After partitioning ’ l—‘

Pivot

Apply MERGESORT recursively ’ /‘1

Pivot

Apply MERGESORT recursively ﬁ—m

— b1]

Step 2: Mergesort in place
After partitioning ’ l—‘

Pivot

Apply MERGESORT recursively ’ /‘1

Pivot

Apply MERGESORT recursively ﬁ—m

—r |

Pivot

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

5/1|/8|7|6|2]3]10/9|11|12| 4

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

511187623 |10]9/|11|12]| 4

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

91108 |7|6|12]11|5|3|2|1]|4

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

91108 |7 (6112|1115 |13 |2|1 |4

4

sort with Mergesort

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124|116 |12/11/5|7|8]9 |10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61111121132 |4 |5|7|8]9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61111121132 |4 |5|7|8]9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

6111|1211 (324 |5|7]|8]9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

6111|1211 |3 (2|4 |5|7]|8]9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

6111|1211 |3 (2|4 |5|7]|8]9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

21112111364 |5|7|8]|9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

21114121113 |64 |5|7|8]|9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

21114121113 |64 |5|7|8]|9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

211121136754 |8]|9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

211121136784 |5]|9]10

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61111121132 |4 |5|7|8]9]10

merge two partsy

QUICKMERGESORT

1. Partition the array according to some pivot element.

2. Sort one part with MERGESORT.

3. Sort the remaining elements recursively with
QUICKMERGESORT.

9/10/8 |7 (6 (12|11|5|3 (2|1 |4
_

wsively with Mergesort

3124 |1(6(12/11|5|7 8|9 10
—_—————

sort recursively with Mergesort

61112132 |4|5|7|8|9]10
| —— | ———

merge two partsy

2145|1367 |8|9|10|11|12

sort recursively with QUICKMERGESORT

QUICKXSORT

Advantage:

e “External” algorithms can be implemented “internal”.

QUICKXSORT

Advantage:
e “External” algorithms can be implemented “internal”.

Assumptions:
@ draw the pivot as median of y/n randomly selected elements

@ uniform distribution of all input permutations

QUICKXSORT

Advantage:
e “External” algorithms can be implemented “internal”.

Assumptions:
@ draw the pivot as median of y/n randomly selected elements

@ uniform distribution of all input permutations

Theorem (QUICKXSORT Average-Case)

If X is some sorting algorithm requiring at most nlog n+ cn+ o(n)
comparisons on average, then QUICKXSORT needs at most
nlog n+ cn+ o(n) comparisons on average.

General recurrence relation for the average number of comparisons:
(S(n) = nlog n+ cn+ o(n) = bound for the average number of
comparisons of X)

T(n) < Tpivor(n) +n+ Y (Pr [pivot = K]
k=1

-max{ T(k—1)+ S(n— k), T(n— k) + S(k — 1) }>

General recurrence relation for the average number of comparisons:
(S(n) = nlog n+ cn+ o(n) = bound for the average number of
comparisons of X)

T(n) < Tpivor(n) +n+ Y (Pr [pivot = K]
k=1

-max{ T(k—1)+ S(n— k), T(n— k) + S(k — 1) }>

It is very unlikely that the pivot is chosen outside the interval
1 1
[n(z—¢).n(z+¢)]:

NS

|

G-9 a(i+9

General recurrence relation for the average number of comparisons:
(S(n) = nlog n+ cn+ o(n) = bound for the average number of
comparisons of X)

T(n) < Tpivor(n) +n+ Y (Pr [pivot = K]
k=1
-max{ T(k—1)+S(n—k), T(n—k)+ S(k—1) })
~ Tpivot(n) +n+ T(n/2) + S(n/z)
= n+ nlog(n/2) + cn+ o(n).

It is very unlikely that the pivot is chosen outside the interval
1 1
[n(z—¢).n(z+¢)]:

NI

|

G-9 a(i+9

Worst case of QUICKXSORT

Worst case is ©(n3/?).

Worst case of QUICKXSORT

Worst case is ©(n3/?).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

@ Choose some slowly decreasing function
5(n) € o(1)NQ(n~1/%), e.g., §(n) =1/ log n.

Worst case of QUICKXSORT

Worst case is ©(n3/?).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):
@ Choose some slowly decreasing function
5(n) € o(1)NQ(n~1/%), e.g., §(n) =1/ log n.
@ Whenever the pivot is more than n - §(n) off the median,
choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Worst case of QUICKXSORT

Worst case is ©(n3/?).

Trick to obtain a provable bound for the worst case (similar to
Introsort (Musser, 1997)):

@ Choose some slowly decreasing function
5(n) € o(1)NQ(n~1/%), e.g., §(n) =1/ log n.
@ Whenever the pivot is more than n - §(n) off the median,

choose the next pivot as median of the whole array using
some linear time (worst case) algorithm.

Theorem (QUICKXSORT worst case)

Let X be a sorting algorithm with at most nlog n+ cn + o(n)
comparisons on average and nlog n+ O(n) comparisons in the
worst case. Then QUICKXSORT (with the above modification)
performs at most nlog n+ cn + o(n) comparisons on average and
nlog n+ O(n) comparisons in the worst case.

QUICKXSORT

QUICKWEAKHEAPSORT performs at most nlogn — 0.91n + o(n)
comparisons on average.

QUICKMERGESORT s an internal sorting algorithm that performs
at most nlogn — 1.26n + o(n) comparisons on average.

(See e.g. Knuth, The Art of Computer Programming, Sorting and
Searching 5.2.4-13.)

QUICKMERGESORT with base case

Further improvement for QUICKMERGESORT:

@ Sort small subarrays with some other algorithm Z.

QUICKMERGESORT with base case

Further improvement for QUICKMERGESORT:

@ Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:
e (Binary) INSERTIONSORT
e MERGEINSERTION (Ford, Johnson, 1959)

QUICKMERGESORT with base case

Further improvement for QUICKMERGESORT:

@ Sort small subarrays with some other algorithm Z.

Candidates for the base case algorithm Z:

o (Binary) INSERTIONSORT

e MERGEINSERTION (Ford, Johnson, 1959)

Let Z be some sorting algorithm with nlog n+ dn + o(n)
comparisons on average and at most O(n?) other operations (e.g.
moves). If base cases of size ©(log n) are sorted with Z,
QUICKMERGESORT needs at most nlog n -+ dn + o(n)
comparisons on average and O(nlog n) other instructions.

QUICKMERGESORT with base case INSERTIONSORT

Insert the elements successively into the already sorted sequence:
@ find the position of each element by binary search

@ make place for the new element by moving all elements by one

QUICKMERGESORT with base case INSERTIONSORT

Insert the elements successively into the already sorted sequence:
@ find the position of each element by binary search
@ make place for the new element by moving all elements by one

~> quadratic number of moves.

QUICKMERGESORT with base case INSERTIONSORT

Insert the elements successively into the already sorted sequence:
@ find the position of each element by binary search
@ make place for the new element by moving all elements by one

~> quadratic number of moves.

Proposition (Average Case of INSERTIONSORT)

INSERTIONSORT needs nlogn — (2In2 + ¢(n)) - n+ O(log n)
comparisons on average where c(n) € [—0.005,0.005].

QUICKMERGESORT with base case INSERTIONSORT

Insert the elements successively into the already sorted sequence:
@ find the position of each element by binary search
@ make place for the new element by moving all elements by one

~> quadratic number of moves.

Proposition (Average Case of INSERTIONSORT)

INSERTIONSORT needs nlogn — (2In2 + ¢(n)) - n+ O(log n)
comparisons on average where c(n) € [—0.005,0.005].

QUICKMERGESORT with base case INSERTIONSORT uses at most
nlog n — 1.38n + o(n) comparisons on average.

MERGEINSERTION

The algorithm:
1. Build pairs a; > b;.
2. Sort the values ay,...,a,/2) recursively.

3. Insert the elements by ..., by, 27 into the linear chain by
binary insertion following a special ordering.

Theorem (Hadian 1969, Knuth 1973)

MERGEINSERTION needs at most nlog n — 1.329n + O(log n)
comparisons in the worst case.

QUICKMERGESORT with base case MERGEINSERTION

Theorem (Average Case of MERGEINSERTION)

A simplified version of MERGEINSERTION needs at most
nlogn—1.3999 - n + O(log n) comparisons on average.

QUICKMERGESORT with base case MERGEINSERTION

Theorem (Average Case of MERGEINSERTION)

A simplified version of MERGEINSERTION needs at most
nlogn—1.3999 - n + O(log n) comparisons on average.

QUICKMERGESORT with MERGEINSERTION as base case needs
at most nlogn — 1.3999n + o(n) comparisons on average.

Experiments on INSERTIONSORT and MERGEINSERTION

(Number of element comparisons — n log n) / n

-1.35

---%---- Insertionsort

136 | —#— Simple Mergelnsertion
““““ - Mergelnsertion
Lower Bound

-1.37 |

»
o X %
—138 e T T T T
P

| S
-1.43 a o S H

—144

-1.45 .

1
10 212 214 2

n [logarithmic scale]

Sorting with nlog n + kn comparisons.

Experimental behavior of the linear term of Quic

0.4 T T T T
---%--- STL Introsort (Quicksort)
02 b e Quicksort Median of Sqrt ,
~ STL Mergesort
v+ QuickWeakHeapsort
OF ..o QuickMergesort]
—h-— QuickMergesort (MI)
-02 | Lower Bound T

(Number of element comparisons — n log n) / n

I I I
214 216 218 220 222

n [logarithmic scale]

Sorting with nlog n + kn comparisons.

Running times of QUICKXSORT and other algorithms

0.45 T T T T L
¥ QuickWeakHeapsort v
04 L - QuickMergesort (MI) v |
’ - Quicksort Median of Sqit ¥
-- - - QuickMergesort v 2 ﬁ i A
Lo ;] H
0.35 STL Mergesort n 4 4'“ ,A!

---%---- STL Introsort (Qulckz?ﬁh 4

Execution time per element [Us]

n [logarithmic scale]

Running time with integer data.

Running times of QUICKXSORT and other algorithms

1.1 T T 7
===+ QuickWeakHeapsort ¥
- STL Introsort (Quicksort) X
1r - QuickMergesort (MI) ;x* 4
---%--- Quicksort Median of Sqrt *33" A 4;'
N B STL Mergesort 'k*j £ 4
] | . x‘k’ b a0
3 09 - - - QuickMergesort el 4 A X
% 3 Yo
g * TUA LA XX
S o8k ,,,e“ gha * xxxx =g
b *x A7 I x E|EIE|
Q "
o o g E e meget”
0.7 . & xx EEEEI 4
g l s x* P
= " A i maEge®
.5)(X‘ % * xxxx o E‘Eo"
3 061 aM & s %xx OEE e i
§ [paf o pozgee
o ,x“ e mﬂn,.
0.5 ;x)(x FE?@. T
=otlye
=ove’
0.4 E
Il Il Il Il Il
o2 o4 516 518 220)22

n [logarithmic scale]
Running time with more expensive comparisons simulated by calculating
the logarithm of one operand in every comparison.

Constant-factor-optimal sorting with nlog n -+ xn + o(n)

comparisons.

Mem. x Worst K Avg. K Exper.
Information theo. lower bound -1.44 -1.44
BoTTOMUPHEAPSORT 0(1) w(1) - [0.35,0.39]
QUICKHEAPSORT O(1) w(1) -0.03 ~ 0.20
O(n) bits w(1) -0.99 ~-1.24
WEAKHEAPSORT O(n) bits 0.09 - [-0.46,-0.42]
RELAXEDWEAKHEAPSORT O(n) -0.91 -0.91 -0.91
EXTERNALWEAKHEAPSORT # O(n) -0.91 -1.26* -
MERGESORT O(n) -0.91 -1.26 -
INPLACEMERGESORT O(1) -1.25 - -
INSERTIONSORT (1) -0.91 } -1.38 # | [-1.38,-1.39]
MERGEINSERTION o(1) -1.32 1 -1.3999 # | [-1.43,-1.41]
QUICKWEAKHEAPSORT O(n) bits | O(1) # -0.91# [-1.13,-1.25]
QUICKMERGESORT # o(1) o(1) -1.26 [-1.29,-1.27]
QUICKMERGESORT (IS) # O(1) O(1) -1.38 -
QUICKMERGESORT (MI) # O(1) O(1) -1.3999 [-1.41,-1.40]

#£ in this paper, — not analyzed,

* only for n = 2%, 1 needs ©(n?) moves.

Conclusion and open problems

@ Generic analysis of QUICKXSORT.
@ QuickMergesort is highly competitive.

@ Variant with base cases needs < nlogn —1.3999n + o(n)
comparisons on average.

Conclusion and open problems

@ Generic analysis of QUICKXSORT.

@ QuickMergesort is highly competitive.

@ Variant with base cases needs < nlogn —1.3999n + o(n)
comparisons on average.

@ Exact average case of MERGEINSERTION?

@ How close can one get to the lower bound?

Conclusion and open problems

Generic analysis of QUICKXSORT.

QuickMergesort is highly competitive.

Variant with base cases needs < nlog n — 1.3999n + o(n)
comparisons on average.

Exact average case of MERGEINSERTION?

How close can one get to the lower bound?

Thank you!

