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Dehn’s fundamental problems

Let G be a group, generated by a finite set Σ with Σ = Σ−1 ⊆ G .
Write a for a−1 ∈ Σ.

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?

Conjugacy problem: Given v ,w ∈ Σ∗. Question: v ∼ w?

(∃ z ∈ G such that zvz−1 = w?)

Structure of the talk:
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Overview: Classification of Baumslag-Solitar groups

Baumslag-Solitar group: BSp,q =
〈
a, t | tapt−1 = aq

〉
= HNN(〈a〉 , t; ap 7→ aq)

W.l.o.g. 1 ≤ p ≤ |q|.

G is solvable ⇐⇒ p = 1,

G is linear ⇐⇒ p = |q| or p = 1,

G is not linear, otherwise.
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Overview: Word and conjugacy problem

The word problem of BSp,q is solvable in polynomial time.

Theorem (Robinson, 1993)

The word problem of BS1,q is in non-uniform TC0.

TC0 = recognized by a family of circuits of constant depth with
unbounded fan-in ¬, ∧, ∨, and majority gates.

Theorem (Diekert, Miasnikov, W., 2014)

The word and conjugacy problem of BS1,q are (uniform)
TC0-complete.
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Overview: Word and conjugacy problem

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups (in particular for linear
Baumslag-Solitar groups) can be solved in LOGSPACE.

Theorem (W., 2015)

The word and conjugacy problem of BSp,q is in LOGDCFL.

The conjugacy problem of BSp,q is LOGSPACE-Turing-reducible
to the word problem.

LOGDCFL = LOGSPACE-reducible to a det. context-free language

Conjecture (W., 2014)

The conjugacy problem of BSp,q is in LOGSPACE.
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Proof: the word problem of BS1,2 is in TC0

BS1,2
∼= Z[1/2] o Z = { (r ,m) | r ∈ Z[1/2],m ∈ Z }

with multiplication

(r ,m) · (s, q) = (r + 2ms,m + q).

(Z[1/2] = { p/2q ∈ Q | p, q ∈ Z })

The isomorphism is given by

a 7→ (1, 0), t 7→ (0, 1).

Example

tataat 7→ (0, 1)(1, 0)(0, 1)(1, 0)(1, 0)(0,−1)

=
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Proof: the word problem of BS1,2 is in TC0

Lemma

Let (r1,m1), . . . , (rn,mn) ∈ Z[1/2] o Z. Then, for
(r ,m) = (r1,m1) · · · (rn,mn), we have m =

∑n
i=1 mi and

r =
n∑

i=1

ri ·
i−1∏
j=1

2mj

Proof: by induction using (r ,m) · (s, q) = (r + 2ms,m + q).

Corollary (Diekert, Miasnikov, W., 2014)

The word problem of BS1,q is in uniform TC0.

Proof: iterated addition and iterated multiplication (Hesse, 2001)
is in uniform TC0.

Theorem (König, Lohrey, 2015)

The word problem of f.g. solvable linear groups is in uniform TC0.
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The word problem of BSp,q

BSp,q contains a free subgroup
〈
t, ata−1

〉
if |p| , |q| 6= 1.

 word problem is NC1-hard (Robinson, 1993).

Two aspects:

Word problem of solvable Baumslag-Solitar groups.

Word problem of the free group F2.

Britton’s Lemma

w ∈ 〈a〉 = A in BSp,q ⇐⇒ w can be reduced to some word in
{a, a}∗ by Britton reductions

tεakt−ε → a` (ε ∈ {±1 }).

 word problem in P by storing exponents in binary.
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The word problem of BSp,q

Consider the subgroup 〈t〉 (= quotient a 7→ 1, t 7→ t):

−2

−1

0

1

2

t t t t t t t t t t = w

= w ′= w

w = 1 if and only if every t cancels with some t.

Only letters on the same level can cancel!

New rule: only letters with the same color can cancel

 word problem of the free group
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The word problem of BSp,q

New rule: only letters with the same color can cancel

 word problem of the free group

but also in BSp,q:

w = t a t a t aaa t a t a t t aa t ∈ BS2,3

0

1

2

t t t t t t t t

 w ∈ 〈a〉 = A
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The word problem of BSp,q

How to compute the color?

w = ak0tε1ak1 · · · tεi aki tεi+1aki+1 · · · tεjakj tεj+1akj+1 · · · tεnakn

with εµ ∈ {±1 }, kµ ∈ Z. Define

wi ,j = aki tεi+1aki+1 · · · tεjakj

ki ,j =

j∑
ν=i

kν ·
ν∏

µ=i+1

(
q

p

)εµ
∈ Z[1/pq]

Numbers ki ,j can be computed in TC0.

Lemma 1

wi ,j ∈ A ⇐⇒ wi ,j = aki,j in BSp,q

Proof.

Induction: by Britton’s Lemma, w = ak0 tε1w ′t−ε1 w ′′.
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The word problem of BSp,q

Define a relation ∼C ⊆ { 1, . . . , n } × { 1, . . . , n }:
For i < j :

i ∼C j ⇐⇒ εi = −εj and

j−1∑
`=i+1

ε` = 0 (same level)

and ki ,j−1 ∈

{
pZ if εi = 1

qZ if εi = −1.

For i > j : i ∼C j ⇐⇒ j ∼C i .

 i ∼C j ⇐⇒ tεi and tεj are on the same level and

cancel if everything in between cancels.

≈ = reflexive and transitive closure of ∼C

Lemma 2

If i ≈ j and εi = −εj , then i ∼C j .
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The word problem of BSp,q

Proof.

Show: i ∼C `, ` ∼C m, and m ∼C j =⇒ i ∼C j . Then induction.

Let {α, β, γ, δ } = { i , j , `,m } with α < β < γ < δ.
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Let {α, β, γ, δ } = { i , j , `,m } with α < β < γ < δ.

α β γ δ

kα,δ−1 = kα,β−1 +
p

q
· kβ,γ−1 + kγ,δ−1
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The word problem of BSp,q

How to compute the color? Color = ≈-class.

w = ak0tε1ak1 · · · tεnakn ∈ BSp,q

Let Σw =
{
t[i ], t [i ]

∣∣ i ∈ { 1, . . . , n }
}

be a new set of generators:

w̃ := tε1

[1] · · · t
εn
[n] w̃i ,j := t

εi+1

[i+1] · · · t
εj
[j]

Example

w = t a t a t aaa t a t a t t aa t 7→ w̃ = t[1] t[2] t [3] t[3] t [2] t [1] t[1] t [1]

Lemma 3

wi ,j ∈ A ⇐⇒ w̃i ,j = 1 in F (Σw )

Corollary

w = 1 in BSp,q ⇐⇒ w̃ = 1 in F (Σw ) and k0,n = 0.
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The word problem of BSp,q

Proof of Lemma 3.

Let wi ,j ∈ 〈a〉 = A. By Britton’s Lemma,

wi ,j = aki tεi+1wi+1,`−1t
ε` w`,j

with ε` = −εi+1, w`,j ∈ A, and

wi+1,`−1 ∈

{
〈ap〉 if εi+1 = 1

〈aq〉 if εi+1 = −1.

By induction w̃i+1,`−1 = w̃`,j = 1 in F (Σw ).

By Lemma 1, ki+1,`−1 ∈ pZ (resp. qZ).

 i + 1 ∼C ` and t
εi+1

[i+1] = t−ε`[`] .

Thus, w̃i ,j = t
εi+1

[i+1] w̃i+1,`−1 t
−εi+1

[i+1] w̃`,j = 1 in F (Σw ).
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The word problem of BSp,q

How to compute the color? Color = ≈-class.

On input w , compute w̃ :

For every index i compute the smallest j with i ≈ j as
representative of [i ]: by Lemma 2, two steps of ∼C suffice.

i ∼C j can be checked in LOGSPACE (indeed TC0):
check whether εi = −εj
compute

∑j−1
`=i+1 ε`

compute ki,j−1

check whether q | ki,j−1 (resp. p | ki,j−1)

 LOGSPACE-reduction to the word problem of F (Σw ) ≤ F2.

Theorem (Lipton, Zalcstein)

The word problem of F2 is in LOGSPACE.

Theorem (W., today)

The word problem of Baumslag-Solitar groups is in LOGSPACE.
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Solving the conjugacy problem of BSp,q

Input: v ,w ∈ {a, a, t, t}∗.
1 Compute Britton-reduced words v̂ , ŵ .
2 Compute cyclically Britton-reduced words ṽ , w̃ .
3 Check whether ṽ ∼ w̃ using Collins’ Lemma.

Britton reductions in LOGSPACE:

w = ak0tε1ak1 · · · tεnakn ∈ BSp,q,

For i = 0, . . . , n

Find the largest j > i with wi ,j−1 = aki,j−1 in BSp,q,

Output aki,j−1tεj ,

i := j .

Example

w =

↑

a t a t aa t aa t t

↑

a t t a t

↑

a

↑

∈ BS2,3

Output =

a8t aat a
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Example
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Solving the conjugacy problem of BSp,q

Let g = ak ∈ 〈a〉. Then

aga−1 = g ,

tgt−1 = takt−1

{
= a

q
p
k if p | k

is Britton reduced otherwise.

Thus, for k 6= `:

ak ∼ a` ⇐⇒ ∃ j ∈ Z such that k ·
(
q

p

)j

= `

and

{
k ∈ pZ, ` ∈ qZ, if j > 0,

k ∈ qZ, ` ∈ pZ, otherwise.

There are only polynomially many possibilities for j
 check them all in parallel.

Corollary

It can be checked in TC0 whether ak ∼ a`.
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Solving the conjugacy problem of BSp,q

Lemma (Collin’s Lemma for HNN extensions)

Let v ,w ∈ {a, a, t, t}∗ be

cyclically Britton-reduced,

v ,w 6∈ 〈a〉.
Then

v ∼ w ⇐⇒ there is a cyclic permutation w ′ of w and x ∈ Z
such that v = axw ′a−x .

Armin Weiß Conjugacy in Baumslag-Solitar groups 19/31



Solving the conjugacy problem of BSp,q

Test all cyclic permutations in parallel

For
w ′ = ak0tε1ak1 · · · tεnakn ∈ BSp,q,

v = a`0tε1a`1 · · · tεna`n ∈ BSp,q,

the existence of x ∈ Z with v = axw ′a−x reduces to finding
an integral solution x , y1, . . . , yn for the system of equations

yi =
1

αi

x ·
i−1∏
µ=1

(
p

q

)εµ
+

i−1∑
ν=1

(kν − `ν) ·
i−1∏

µ=ν+1

(
p

q

)εµ ,

x = kn − `n + x ·
n∏

µ=1

(
p

q

)εµ
+

n−1∑
ν=1

(kν − `ν) ·
n∏

µ=ν+1

(
p

q

)εµ
.

Can be done in TC0.
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Conjugacy in Baumslag-Solitar groups

Theorem (W.)

Let G be a Baumslag-Solitar group. Then the conjugacy problem
of G is

TC0-complete if G = BS1,p is a solvable Baumslag-Solitar
group,

in LOGSPACE, otherwise.
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Generalized Baumslag-Solitar groups

A generalized Baumslag-Solitar group (GBS group) is a

fundamental group of a finite graph of groups

with infinite cyclic vertex and edge groups.

A GBS group G is given by a graph of groups G:

an undirected graph (V ,E )
(with involution · : E → E , ι(t) the initial, τ(t) the terminal
vertex of t ∈ E ),

αt , βt ∈ Z \ { 0 } for t ∈ E such that αt = βt .

F (G) =
〈
V ,E

∣∣∣ tt = 1, tbβt t = aαt for t ∈ E , a = ι(t), b = τ(t)
〉

Fix a vertex a ∈ V : G = π1(G, a) ≤ F (G)

G = { a0t1a1 · · · tnan | ti ∈ E , ai = τ(ti ) = ι(ti+1), a0 = an = a }
= “all closed paths starting at a.”
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Generalized Baumslag-Solitar groups

Example

BSp,q a t
q

p

Example

ar
1

2

s

23

t
12

5

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉
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Word and Conjugacy Problem in GBS groups

Word problem

Britton reductions

Conjugacy for cyclically reduced words u, v 6∈ 〈a〉

work all as for ordinary Baumslag-Solitar groups.
 everything in LOGSPACE

But: Conjugacy for cyclically reduced words u, v ∈ 〈a〉 does
not work as for ordinary Baumslag-Solitar groups.

Remember:

ak ∼ a` in BSp,q ⇐⇒ ∃ j ∈ Z with k ·
(
q

p

)j

= ` and...

Now: more than polynomially many potential conjugating
elements.
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Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

a15 ∼ a16?

sst a15 tss = ss a36 ss

Question: ak ∼ a`? Write k = rk · 2c · 3d · 5e ,

aaka = ak ,

rak r = ark ·2
c+1·3d ·5e ,

saks = ark ·2
c−1·3d+1·5e , takt = ark ·2

c−2·3d−1·5e+1
.

 suffices to consider (c , d , e).
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Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)

Armin Weiß Generalized Baumslag-Solitar groups 26/31



Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)

Armin Weiß Generalized Baumslag-Solitar groups 26/31



Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)

Armin Weiß Generalized Baumslag-Solitar groups 26/31



Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)

Armin Weiß Generalized Baumslag-Solitar groups 26/31



Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)

Armin Weiß Generalized Baumslag-Solitar groups 26/31



Word and Conjugacy Problem in GBS groups

Question: ak ∼ a`?
Let P = {primes occurring in αt , βt(t,∈ E )}.

k = rk ·
∏
p∈P

pep(k), ` = r` ·
∏
p∈P

pep(`).

If rk 6= r`, then ak 6∼ a`. Otherwise,

ak ∼ a` ⇐⇒ (ep(k))p∈P ≈ (ep(`))p∈P

≈ = congruence on NP generated by (ep(αt))p∈P ≈ (ep(βt))p∈P
for t ∈ E .

Theorem (Ballantyne, Lankford, 1981)

There is a weight-reducing, confluent rewriting system for ≈.

Writing down (ep(k))p∈P takes space O(log log k).
Greedy application of rewriting rules  LOGSPACE.
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Conjugacy in GBS groups

Theorem (W.)

Let G = π1(G) be a generalized Baumslag-Solitar group. Then the
conjugacy problem of G is in LOGSPACE.
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Uniform Conjugacy in GBS groups

Input:

a finite graph of groups G consisting of

(V ,E ),
αt , βt ∈ Z \ { 0 } for t ∈ E given in binary,

two words v ,w ∈ π1(G)

Question: v ∼ w in π1(G).

Theorem (W.)

The uniform conjugacy problem for GBS groups is
EXPSPACE-hard.

Proof.

The uniform reachability problem for symmetric Petri nets is
EXPSPACE-complete (Mayr, Meyer, 1982).
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More General

Fundamental groups of finite graphs of groups with free abelian
vertex and edge groups:

Conjecture

Word problem is in DET (i.e. NC1-reducible to integer
determinant, iterated matrix product, or matrix powering).

Theorem (Bogopolski, Martino, Ventura, 2010)

Conjugacy problem is undecidable in general.

Theorem (Diekert, Miasnikov, W., 2015)

Conjugacy problem is strongly generically in P (except special
case).
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Conclusion

The word and conjugacy problem of generalized
Baumslag-Solitar groups is in LOGSPACE.

Conjecture: The uniform conjugacy problem for GBS groups is
EXPSPACE-complete.

Conjecture: The word problem of fundamental groups of finite
graphs of groups with free abelian vertex and edge groups is
in DET.

Thank you!
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