Worst-Case Efficient Sorting with QuickMergesort

Stefan Edelkamp! and Armin WeiB?

IKing's College London, UK

2FMI, Universitat Stuttgart, Germany

San Diego, January 7, 2019

Comparison-based sorting: Quicksort, Heapsort, Mergesort

Comparison-based sorting: Quicksort, Heapsort, Mergesort
25 -

— = N
o ol o
1 1 1

time per nlog n [ns]

(6]
1

1 1 1 1
210 215 220 225
number of elements n
—=— std::sort (Quicksort/Introsort)

—=— std::partial_sort (Heapsort)

—— std::stable_sort (Mergesort)

Running times (divided by nlog n) for sorting integers.
Left: random inputs.

Comparison-based sorting: Quicksort, Heapsort, Mergesort
25 - 25 -

220 - 220 -
< <
20 20
S 15 - 2 15-
< <
5 5
S 10 - e 10 -
[0} [0}
£ E

(6]
1
o1
1

2‘10 2‘15 2‘20 2‘25 2‘10 2‘15 2‘20 2‘25
number of elements n number of elements n

—=— std::sort (Quicksort/Introsort)
—=— std::partial_sort (Heapsort)
—— std::stable_sort (Mergesort)

Running times (divided by nlog n) for sorting integers.

Left: random inputs.

Right: random with large elements in the middle and end.

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

@ Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

@ Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

@ Make Heapsort fast: Bottom-up Heapsort (not very fast)

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

@ Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

@ Make Heapsort fast: Bottom-up Heapsort (not very fast)

@ Make Mergesort in-place:

o block based merging (stable implementations: Grailsort, Wikisort)

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

@ Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

@ Make Heapsort fast: Bottom-up Heapsort (not very fast)

@ Make Mergesort in-place:

o block based merging (stable implementations: Grailsort, Wikisort)
o rotation based merging (stable, but O(nlog® n))

Quicksort, Heapsort, Mergesort

Algorithm | Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X v v
Mergesort v X v

Wish to have three times v;

@ Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

@ Make Heapsort fast: Bottom-up Heapsort (not very fast)
@ Make Mergesort in-place:

o block based merging (stable implementations: Grailsort, Wikisort)
o rotation based merging (stable, but O(nlog® n))
e use one half as buffer to sort the other half

(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Outline:
@ QuickMergesort
@ Our improvements and theoretical bounds

@ Experiments

procedure QUICKSORT(AL, ..., r])
if r > (then
pivot < choosePivot(A[(, ..., r])
cut < partition(A[/, .. ., r], pivot)
Quicksort(A[Y, . .., cut — 1])
Quicksort(A[cut, . .., r])
end if
end procedure

@NT s

procedure QUICKSORT(AL, ..., r])
if r > (then
pivot <— choosePivot(A[(, ..., r])
cut < partition(A[/, .. ., r], pivot)
Quicksort(A[Y, . .., cut — 1])
Quicksort(A[cut, . .., r])
end if
end procedure

@NT s

1: procedure QUICKSORT(A[L,...,r])

2 if r > (then

3 pivot < choosePivot(A[(, ..., r])
4: cut < partition(A[/, . .., r], pivot)
5: Quicksort(A[Y, . .., cut — 1])

6 Quicksort(A[cut, ..., r])

7 end if

8: end procedure

o After line 4:

< pivot [:
>
l l > pivot

1: procedure QUICKSORT(A[L,...,r])
2 if r > (then
3 pivot < choosePivot(A[(, ..., r])
4: cut < partition(A[/, .. ., r], pivot)
5: Quicksort(A[l, . .., cut — 1])
6 Quicksort(A[cut, ..., r])
7 end if
8: end procedure
o After line 4:
< pivot [:
l 1 > pivot ‘
o After line 5:

_ |

1: procedure QUICKSORT(A[L,...,r])
2 if r > (then
3 pivot < choosePivot(A[(, ..., r])
4: cut < partition(A[/, .. ., r], pivot)
5: Quicksort(A[Y, . .., cut — 1])
6 Quicksort(A[cut, . .., r])
7 end if
8: end procedure
o After line 4:
< pivot [-
l l > pivot ‘
o After line 5:

_ |

@ After line 6: both parts sorted recursively with Quicksort

]

QuickMergesort

1: procedure QUICKSORT(A[L,...,r])

2 if r > (then

3 pivot < choosePivot(A[(, ..., r])
4: cut < partition(A[/, .. ., r], pivot)
5: Quicksort(A[Y, . .., cut — 1])

6 Quicksort(A[cut, ..., r])

7 end if

8: end procedure

QuickMergesort

procedure QUICKSORT(AL, ..., r])
if r > (then
pivot < choosePivot(A[4, ..., r])

1:

2

3:

4: cut < partition(A[/, ..., r], pivot)
5: Merg&%/\[& ...,cut —1])

6: Quicksort(A[cut, ..., r])

7

8:

end if
end procedure

QuickMergesort

procedure QUICKMERGESORT(A[L, ..., r])
if r > (then
pivot < choosePivot(A[(, ..., r])
cut < partition(A[/, .. ., r], pivot)
Mergesort(A[/, . .., cut — 1])
QuickMergesort(Alcut, . .., r])
end if
end procedure

@NTHEWNMR

QuickMergesort

1: procedure QUICKMERGESORT(A[Y, ..., r])
2 if r > (then

3 pivot < choosePivot(A[(, ..., r])

4: cut < partition(A[/, .. ., r], pivot)

5: Mergesort(A[L, . .., cut — 1])

6: QuickMergesort(A[cut, . .., r])

7 end if
8: end procedure

o After line 4:

l < pivot { > pivot ‘

o After line 5:

_ |

o After line 6: both parts sorted recursively with QuickMergesort

]

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

7114 |5|6(10/9|2|3|1]0]8

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

71114 |5|6(10/9|2|3|1]0]8

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]|7]9]|10|11] 8

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 8

sort with Mergesort

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10/8|7|0|1]5]6

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

K merge two parts

9|10 8|11 2|3 |4 |7|0|1]5]6

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

10| 8 |11 3|4|7]0|1|5]6
T T T

(=]
N

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

10| 8 |11 304|7]9]1|5]|6
T T T

o
N

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

0O|10|8 (11| 2|3 |4]|7]9

—_
1
(o)}

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

0|18 |11{2|3|4|7]9]10

1
(o)}

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts
O|1|2|11|8|3|4]|7]9]10
T T T

1
(o)}

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts
0O|1]|2|3|8|11|4]7]9]10
T i T

1
(o)}

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts
0O|1]|2|3|4|11|8]7]9]10
T T

1
(o)}

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts
0O|1]|2|3|4|5|8]7]9]|10|11
T T

[e)}

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

0O|1|2|3|4|5]6]|7]9]|10]11] 8

QuickMergesort

1. Partition according to some pivot element.
2. Sort one part with Mergesort.
3. Sort the the other part recursively with QuickMergesort.

312|4|5|6|0]1]7]9]|10(11] 38

—_——
sort recursively _with Mergesort

3124|119 |10;/8|7|0|1]5]6

w with Mergesort

9108|112 |34 |7|0|1]5]6

merge two parts

0O|1|2|3|4|5]6]|7]9]|10]11] 8

sort recursively with QuickMergesort

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! @

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! @

Solution: choose the median as pivot:

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect.

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect.
~ In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect. Problem: worst case
~ In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect. Problem: worst case
~ In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

e Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect. Problem: worst case
~ In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

e Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs < nlogn — 0.83n (resp. nlogn — 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of \/n).

Still quadratic worst-case (with median-of-three)! S

Solution: choose the median as pivot:

@ Quickselect resp. Introselect. Problem: worst case
~ In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

e Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, 2

5 %, ... elements ~~ 40n comparisons

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:
@ form groups of 3 elements
@ compute the median of each group
@ compute the median of the n/3 medians

(LTIt - 111}
]

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:
@ form groups of 3 elements
@ compute the median of each group
@ compute the median of the n/3 medians

(LTIt - 111}

M]

One third are < p: p

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:
@ form groups of 3 elements
@ compute the median of each group
@ compute the median of the n/3 medians

One third are < p: p

Basic MoMQuickMergesort needs at most nlog n+ 13.8n+ o(n)
comparisons.

Merging with less buffer space (Reinhardt 1992)

e

@ Step 1 (merge from the left):

Merging with less buffer space (Reinhardt 1992)

e

@ Once the buffer is full, the final position for the largest element is “free”.

@ Expected result: ﬂ

@ Step 1 (merge from the left):

Merging with less buffer space (Reinhardt 1992)

e

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): /T/l/r‘/‘
Result: e S—

Step 1 (merge from the left):

Merging with less buffer space (Reinhardt 1992)

@ Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): /T/l/r‘/‘
@ Result: e S—

Need a guarantee that one fifth are smaller/greater than the pivot:

@ Step 1 (merge from the left):

Merging with less buffer space (Reinhardt 1992)

@ Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): /T/l/r‘/‘
@ Result: e S—

Need a guarantee that one fifth are smaller/greater than the pivot:

@ Step 1 (merge from the left):

Merging with less buffer space (Reinhardt 1992)

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): /T/l/r‘/‘
@ Result: e S—

Need a guarantee that one fifth are smaller/greater than the pivot:

Step 1 (merge from the left):

MoMQuickMergesort needs at most nlog n+ 4.57n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

@ Step 1 (merge from the left): m/‘

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

@ Step 1 (merge from the left): m/‘

@ Once the buffer is full, the final position for the largest element is “free”.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

@ Step 1 (merge from the left): m/‘

@ Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): //%

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left): m/‘

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): //%

@ Result: /—/—L—\

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left): m/‘

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): //%

@ Result: /—/—L—\

~> trade-off: effort to find good pivots vs. increased merging costs

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left): m/‘

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): //%

@ Result: /—/—L—\

~> trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for 8 > 1 apply the median-of-pseudomedians-of-15
strategy to n/9 elements. J

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left): m/‘

Once the buffer is full, the final position for the largest element is “free”.

@ Step 2 (merge from the right): //%

@ Result: /—/—L—\

~> trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for 8 > 1 apply the median-of-pseudomedians-of-15
strategy to n/6 elements.

Theorem

| \

MoMQuickMergesort with undersampling factor 6 = 2.2 needs at most
nlog n+ 1.59n + o(n) comparisons.

e Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

e Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

@ Not clear how to find worst-case instances.

e Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

@ Not clear how to find worst-case instances.
@ Simulation of worst cases:

e Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

@ Not clear how to find worst-case instances.

@ Simulation of worst cases:

e Discard the computed pivots and compute worst-case pivots using
Quickselect.

e Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

@ Not clear how to find worst-case instances.

@ Simulation of worst cases:

e Discard the computed pivots and compute worst-case pivots using
Quickselect.
o Minor details (e. g. random shuffle before Mergesort).

Counting comparisons

. average case worst case
Algorithm
exp. theo. | exp. theo.
bMQMS 2.772 +£0.02
MQMS 2.084 +0.001
MQMSy; /5 || 0.246 £0.01

< 4 - —— bMQMS
= —— MQMS
0
o 3- —— MQMSy;/5
T~
(2]
é ? -/-/.,-—-
g
£ 1-
8 X
0 -I 1 1 1 1 1 1
210 013 916 919 922 925 028

number of elements n

Number of comparisons (linear term) of MoMQuickMergesort variants

Counting comparisons

. average case worst case
Algorithm
exp. theo. | exp. theo.
bMQMS 2.772 +£0.02 -
MQMS 2.084 +0.001 | 2.094
MQMSy, /5 || 0.246 £0.01 | 0.275

< 4 - —— bMQMS
—— MQMS
3- —— MQMSy;/5

(comparisons—n log n)
N

0 -I 1 1 1 1 1 1
210 013 916 919 922 925 028
number of elements n

Number of comparisons (linear term) of MoMQuickMergesort variants

Counting comparisons

. average case worst case
Algorithm
exp. theo. | exp. theo.
bMQMS 2.772 +0.02 - 13.05 £0.17 | 13.8
MQMS 2.084 +0.001 | 2.094 +0.007 | 4.57
MQMSy; /5 || 0.246 £0.01 | 0.275 | 1.218 +0.011 | 1.59

S 4- —— bMQMS
= —— MQMS
&3- —— MQMSy; /5
< =’
i 7 === MQMS;, /5 (wc)
_é 2 -//-—-—* MQMS (wc)
3 I T e e
e1 Namm—m e
S =
0 -I 1 1 1 1 1 1
510 013 516 519 522 25 28

number of elements n

Number of comparisons (linear term) of MoMQuickMergesort variants
and simulated worst cases.

5.00 -
bMQMS
4.75 - MQMS
MQMS;1/5
- 4.50 -
£ MQMSII/S (WC)
w 4.25 - MQMS (wc)
= bMQMS (wc)
o 4.00 -
o
° :
E3m5-l 000 T~ T
325 -I 1 1 1 1 1 1
510 013 516 519 522 25 28

number of elements n

Running times of different MoMQuickMergesort variants and their
simulated worst cases for random permutations of 32-bit integers.

5.0 -

45 -
Z
<
0 —_—
<
o
o
Q —
E 30 -\-\'\-_‘___

3.0 _\

2‘10 2‘13 2‘16 2‘19 2‘22 2;5 2‘28

number of elements n

Running times for random permutations of 32-bit integers.

In-situ Mergesort
MQMSy; /5
std::sort
(Introsort)
std::partial_sort
(Heapsort)
std::stable_sort
(Mergesort)
Wikisort
MQMS;;/5 (wc)

25 - 25 -
220 - 220 -
< <
20 0
S 15 - 2 15 -
< <
o o
2 10 - 2 10 -
[} [}
E E
T o5- T o5- -

2‘10 2‘15 2‘20 2‘25 2‘10 2‘15 2‘20 2‘25
number of elements n number of elements n

std::partial_sort
(Heapsort)
—— std::sort (MQMS worst case stopper)

—— MQMSy;5 ——

std::sort
(Introsort)

Running times for sorting integers.
Left: random inputs.
Right: Random with large elements in the middle and end.

Running times

IS
o1
1
-
o1
1

o o
£ £
< <
&40- &a0-
S IS
g g
o 3.5 -\ ° 3.5-
e
3.0 - 3.0 -
210 215 220 225 210 215 220 225
number of elements n number of elements n
std::partial_sort
MQMS11/5 (Heapsort)
std::sort td::sort (MQMS . .)
—— Unireser) —e— std::sor worst case stopper

Running times for sorting integers.
Left: random inputs.

Right: Random with large elements in the middle and end.

Conclusion

Algorithm Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X vd v
Mergesort v X v
MoMQuickMergesort v v v

!Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Conclusion

Algorithm Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X vd v
Mergesort v X v
MoMQuickMergesort v v v

o MQMS;, /5 is an unstable sorting algorithm with

e nlogn+ 1.59n + o(n) comparisons in the worst case
e nlogn+ 0.275n 4 o(n) comparisons in the average case

e Implementation with stl-style interface!.

!Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Conclusion

Algorithm Fast on average | “in place” | O(nlogn) worst case
Quicksort v v X
Heapsort X vd v
Mergesort v X v
MoMQuickMergesort v v v

o MQMS;, /5 is an unstable sorting algorithm with

e nlogn+ 1.59n + o(n) comparisons in the worst case
e nlogn+ 0.275n 4 o(n) comparisons in the average case

e Implementation with stl-style interface!.

Thank you!

!Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Experiments with larger records

In-situ Mergesort
MQMS;; /5
std::sort
(Introsort)
std::partial_sort
(Heapsort)

std::stable_sort
(Mergesort)
Wikisort

MQMS;1 /5 (wc)

()
1

time per nlogn [ns]
= = — = =)
© B = o © o

(@]
1

210 212 214 216 218 220 222

number of elements n

Running times of MoMQuickMergesort (average and simulated worst
case), hybrid QMS and other algorithms for random permutations
44-byte records with 4-byte keys.

Experiments sorting pointers

60 -
—— In-situ Mergesort
= MQMSy; 5
50 - std::sort
5 (Introsort)
= 40 - std::partial_sort
& (Heapsort)
- std::stable_sort
a 30 - (Mergesort)
E MQMSy, 5 (we)
- ~
20 __/
/__—_‘7
T

number of elements n

Running times of MoMQuickMergesort (average and simulated worst
case), hybrid QMS and other algorithms for random permutations of
pointers to records.

Experimental setup

e Experiments with random permutations of 32bit integers (other data
types in proceedings).

@ running time and comparison count

@ > 100 measurements for each data point

@ Test environment:
o Intel Core i5-2500K CPU (3.30GHz) with 16GB RAM
o Ubuntu Linux 64bit version 14.04.4
o g++ (4.8.4) compiler with flags -03 -march=native

