Lösungen zum Ergänzungsblatt 1

Hinweise:

- Alle Informationen und Materialien zur Veranstaltung befinden sich auf www.fmi.uni-stuttgart.de/ti/teaching/w18/eti1.
- Die in dieser Ergänzung behandelten Themen beziehen sich auf die Abschnitte 1.1, 1.2 und 1.3 der Vorlesung *Mathematik 1 für inf, swt, msv.* Das Vorlesungskript ist unter

info.mathematik.uni-stuttgart.de/MathelInfWS1819/skr/Skript.pdf zu finden.

• In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig. Während in der Mathematik-I-Vorlesung $\mathbb{N} = \{1, 2, 3, \ldots\}$ festgelegt wird, verwenden wir in *Theoretische Informatik I* die Bezeichnung $\mathbb{N} = \{0, 1, 2, \ldots\}$. Um Verwechslungen zu vermeiden, kann man die Notationen $\mathbb{N}_k = \{k, k+1, k+2, \ldots\}$ und $\mathbb{N}^+ = \mathbb{N}_1$ einführen.

Vorbereitungsaufgaben

Keine Vorbereitungsaufgaben.

Präsenzaufgaben

Präsenzaufgabe 1

Welche der folgenden Aussagen sind wahr und welche falsch?

1. $1 \subseteq \{1, 2, 3\}$

5. $\{1\} \in \{\{1\}, \{2\}\}\$

9. $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$

2. $\emptyset \subseteq \{1, 2, 3\}$

 $6. \{1\} \subseteq \{\{1\}, \{2\}\}$

10. $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}\$

 $3. \{1,3\} \in \{1,2,3\}$

7. $\emptyset \in \{\emptyset, \{\emptyset\}\}$

11. $\emptyset \in \{1, 2, 3\}$

4. $\{\{1\}, \{2\}\} = \{1, 2\}$

8. $\emptyset \subseteq \{\emptyset, \{\emptyset\}\}$

12. $\emptyset \in \{\emptyset, 1, \{1, 2\}, \{\{2\}\}\}\$

Lösung

1. $1 \nsubseteq \{1, 2, 3\}$

 $5. \{1\} \in \{\{1\}, \{2\}\}$

9. $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}$

2. $\emptyset \subseteq \{1, 2, 3\}$

6. $\{1\} \nsubseteq \{\{1\}, \{2\}\}$

10. $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$

 $3. \{1,3\} \notin \{1,2,3\}$

7. $\emptyset \in \{\emptyset, \{\emptyset\}\}$

11. $\emptyset \notin \{1, 2, 3\}$

4. $\{\{1\}, \{2\}\} \neq \{1, 2\}$ 8. $\emptyset \subseteq \{\emptyset, \{\emptyset\}\}$

12. $\emptyset \in \{\emptyset, 1, \{1, 2\}, \{\{2\}\}\}\$

Präsenzaufgabe 2

Geben Sie die Kardinalitäten der folgenden Mengen an.

1. $A = \{1, 2, 3, 4, 5\}$

2. $B = \{1, 3, 2, 3, 2, 3\}$

3. $C = \{\{1, 2, 3\}\}$

4. $D = \{\{1, 2\}, \{2, 3\}\}$

5. $E = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$

Lösung

1. |A| = 5 2. |B| = 3 3. |C| = 1 4. |D| = 2 5. |E| = 3

Präsenzaufgabe 3

Geben Sie eine Mengendarstellung für folgende Mengen an.

1. Die Menge $A = \{0, 1, 4, 9, 16, 25, 36, \ldots\}$ aller Quadratzahlen.

2. Die Menge $B = \{0, ..., 100\}$ aller natürlichen Zahlen zwischen 0 und 100.

3. Die Menge $C = \{1, 2, 4, 8, 16, 32, 64, \ldots\}$ aller Zweierpotenzen.

4. Die Menge $D=\{\ldots,-5,-3,-1,1,3,5,\ldots\}$ aller ungeraden Zahlen.

5. Die Menge $\mathbb Q$ aller rationalen Zahlen, d. h. die Menge aller Brüche.

6. Die Menge $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$ aller Primzahlen.

Lösung

1. $A = \{n \mid \exists m : n = m^2 \land m \in \mathbb{N}\} = \{m^2 \mid m \in \mathbb{N}\}\$

2. $B = \{n \mid n \in \mathbb{N} \land n \le 100\} = \{n \in \mathbb{N} \mid n \le 100\}$

3. $C = \{n \mid \exists m : n = 2^m \land m \in \mathbb{N}\} = \{2^m \mid m \in \mathbb{N}\}\$

4. $D = \{n \mid \exists m : n = 2m + 1 \land m \in \mathbb{Z}\} = \{2m + 1 \mid m \in \mathbb{Z}\}$

5. $\mathbb{Q} = \{x \mid \exists p, q \colon x = \frac{p}{q} \land p \in \mathbb{Z} \land q \in \mathbb{N}_1\} = \{\frac{p}{q} \mid p \in \mathbb{Z} \land q \in \mathbb{N}_1\}$

6. $\mathbb{P} = \{ p \mid p \in \mathbb{N} \land \forall m, n : (m, n \in \mathbb{N}_2 \implies p \neq mn) \}$ $= \{ p \in \mathbb{N} \mid \forall m, n \colon (m, n \in \mathbb{N}_2 \implies p \neq mn) \}$

Präsenzaufgabe 4

Geben Sie folgende Mengen als Auflistung aller Elemente an.

1.
$$A = \{ n \in \mathbb{N} \mid 3 \le n < 6 \}$$

2.
$$B = \{n+5 \mid n \in \{0,1,2,3\}\}$$

3.
$$C = \{ |n-4| \mid n \in \mathbb{N} \land 1 \le n \le 7 \}$$

4.
$$D = \{2n \mid n \in \{1, 2, 3, 4\}\}$$

5.
$$E = \{n \mid 2n \in \{1, 2, 3, 4\}\}$$

Lösung

1.
$$A = \{3, 4, 5\}$$

2.
$$B = \{0+5, 1+5, 2+5, 3+5\} = \{5, 6, 7, 8\}$$

3.
$$C = \{|-3|, |-2|, |-1|, 0, 1, 2, 3\} = \{3, 2, 1, 0, 1, 2, 3\} = \{0, 1, 2, 3\}$$

4.
$$D = \{2 \cdot 1, 2 \cdot 2, 2 \cdot 3, 2 \cdot 4\} = \{2, 4, 6, 8\}$$

5.
$$E = \{\frac{1}{2}, 1, \frac{3}{2}, 2\} = \{0.5, 1, 1.5, 2\}$$

Präsenzaufgabe 5

Für beliebige Mengen A und B gilt:

•
$$A \cup B = \{x \mid x \in A \lor x \in B\}, \text{ z. B. } \{1,2\} \cup \{2,3\} = \{1,2,3\}.$$

•
$$A \cap B = \{x \mid x \in A \land x \in B\}, \text{ z. B. } \{1, 2\} \cap \{2, 3\} = \{2\}.$$

•
$$A \setminus B = \{x \mid x \in A \land x \notin B\}, \text{ z. B. } \{1,2\} \setminus \{2,3\} = \{1\}.$$

•
$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$
, z. B.

$$\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$$

• $A \times B = \{(x, y) \mid x \in A \land y \in B\}$, z. B.

$$\{a,b\}\times\{1,2,3\}=\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$$

Sind A und B zudem Sprachen (d. h. Mengen von Wörtern), dann gilt:

•
$$A \cdot B = \{uv \mid u \in A \land v \in B\}$$
, z. B. $\{a, ab\} \cdot \{b, cc\} = \{ab, acc, abb, abcc\}$.

•
$$A^n = \{w_1 \dots w_n \mid w_1, \dots, w_n \in A\}$$
 für alle $n \in \mathbb{N}$, z. B.

$$\{a,b\}^3=\{aaa,aab,aba,abb,baa,bab,bba,bbb\}.$$

•
$$A^+ = \{ w \mid \text{es gibt ein } n \ge 1 \text{ mit } w \in A^n \}$$

•
$$A^* = \{ w \mid \text{es gibt ein } n \ge 0 \text{ mit } w \in A^n \}$$

Sei $\Sigma = \{a, b\}$ ein Alphabet und $A, B, C \subseteq \Sigma^*$ die Sprachen $A = \{\varepsilon, bb\}, B = \{a, aa\}$ und $C = \{b, ab\}$ über Σ . Geben Sie eine möglichst einfache Mengendarstellung folgender Mengen an. Welche Kardinalitäten haben sie? Welche davon sind Sprachen?

- 1. $B \cdot C$
- $2. B \times C$
- 3. $(A \cdot C) \cap (B \cdot C)$
- 4. $(A \cap B) \cdot C$

Lösung

- 1. $B \cdot C = \{ab, aab, aab, aaab\} = \{ab, aab, aaab\}$ ist eine Sprache mit Kardinalität 3.
- 2. $B \times C = \{(a, b), (a, ab), (aa, b), (aa, ab)\}$ hat Kardinalität 4 und ist keine Sprache.
- 3. $(A \cdot C) \cap (B \cdot C) = \{b, ab, bbb, bbab\} \cap \{ab, aab, aab, aaab\} = \{ab\}$ ist eine Sprache mit Kardinalität 1.
- 4. $(A \cap B) \cdot C = \emptyset \cdot C = \emptyset$ ist eine Sprache mit Kardinalität 0.

Zusatzaufgaben

Zusatzaufgabe 1

Geben Sie folgende Mengen als Auflistung aller Elemente an.

- 1. $A = \{ n \in \mathbb{Z} \mid |n 5| \le 2 \}$
- 2. $B = \{a b \mid a, b \in \mathbb{N} \land a \le b \le a + 4\}$

Lösung

- 1. $A = \{3, 4, 5, 6, 7\}$
- 2. $B = \{-4, -3, -2, -1, 0\}$

Zusatzaufgabe 2

Seien $\Sigma = \{a, b\}$ ein Alphabet und $n \in \mathbb{N}$ eine beliebige natürliche Zahl.

- 1. Sei $L = \{w \in \Sigma^* \mid |w| \le 5\}$. Geben Sie eine Mengendarstellung von L^n an.
- 2. Sei $L_n = \{w \in \Sigma^* \mid |w| = n \land |w|_b = 2\}$. Bestimmen Sie $|L_n|$ in Abhängigkeit von n.

Hinweise:

- |w| bezeichnet die Länge des Wortes w (z. B. |abbab| = 5).
- $|w|_x$ bezeichnet die Anzahl der Vorkommen des Buchstabens x im Wort w (z. B. $|abbab|_b = 3$).

Lösung

- 1. $L^n = \{ w \in \Sigma^* \mid |w| \le 5n \}.$
- 2. $|L_n| = \frac{n(n-1)}{2}$.

Zusatzaufgabe 3

Wie in Präsenzaufgabe 5 seien $\Sigma = \{a, b\}$ ein Alphabet und $A, B, C \subseteq \Sigma^*$ die Sprachen $A = \{\varepsilon, bb\}, B = \{a, aa\}$ und $C = \{b, ab\}$ über Σ . Geben Sie eine möglichst einfache Mengendarstellung folgender Mengen an. Welche Kardinalitäten haben sie? Welche davon sind Sprachen?

- 1. $A \cdot B$
- 5. $C^2 \setminus (A \cup (B \cdot A))$ 9. A^2
- 13. A^*

- 2. $B \cdot A$
- 6. $\mathcal{P}(B^0)$ 10. $(B \cap C)^+$ 14. $C \cdot B \cdot A$

- 3. $\mathcal{P}(A)$
- 7. C^*
- 11. $(A \setminus A^2)^*$
- 15. $(B \cup C)^2$

- 4. $(B \cap C) \times A$ 8. $\mathcal{P}(\emptyset)$
- 12. $A \cdot B \cdot C$
- 16. $\mathcal{P}(\mathcal{P}(\emptyset))$

Lösung

- 1. $A \cdot B = \{a, aa, bba, bbaa\}$ ist eine Sprache mit Kardinalität 4.
- 2. $B \cdot A = \{a, abb, aa, aabb\}$ ist eine Sprache mit Kardinalität 4.
- 3. $\mathcal{P}(A) = \{\emptyset, \{\varepsilon\}, \{bb\}, \{\varepsilon, bb\}\}\$ hat Kardinalität 4 und ist keine Sprache.
- 4. $(B \cap C) \times A = \emptyset \times A = \emptyset$ ist eine Sprache mit Kardinalität 0.
- 5. $C^2 \setminus (A \cup (B \cdot A)) = \{bab, abab\}$ ist eine Sprache mit Kardinalität 2.
- 6. $\mathcal{P}(B^0) = \mathcal{P}(\{\varepsilon\}) = \{\emptyset, \{\varepsilon\}\}\$ hat Kardinalität 2 und ist keine Sprache.
- 7. $C^* = \{w \in \Sigma^* \mid \text{in } w \text{ kommt nach jedem } a \text{ unmittelbar ein } b\}$ ist eine Sprache mit unendlicher Kardinalität.
- 8. $\mathcal{P}(\emptyset) = {\emptyset}$ hat Kardinalität 1 und ist keine Sprache.
- 9. $A^2 = \{\varepsilon, bb, bb, bbbb\} = \{\varepsilon, bb, bbbb\}$ ist eine Sprache mit Kardinalität 3.
- 10. $(B \cap C)^+ = \emptyset^+ = \emptyset$ ist eine Sprache mit Kardinalität 0.
- 11. $(A \setminus A^2)^* = \emptyset^* = \{\varepsilon\}$ ist eine Sprache mit Kardinalität 1.
- 12. $A \cdot B \cdot C = \{ab, aab, aaab, bbab, bbaab, bbaab\}$ ist eine Sprache mit Kardinalität 6.
- 13. $A^* = \{(bb)^n \mid n \in \mathbb{N}\}$ ist eine Sprache mit unendlicher Kardinalität.
- 14. $C \cdot B \cdot A = \{ba, babb, baa, baabb, aba, ababb, abaa, abaabb\}$ ist eine Sprache mit Kardinalität 8.
- 15. $(B \cup C)^2 = \{aa, aaa, ab, aab, aaaa, aaab, ba, baa, bb, bab, aba, abaa, abb, abab\}$ ist eine Sprache mit Kardinalität 14.
- 16. $\mathcal{P}(\mathcal{P}(\emptyset)) = \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$ hat Kardinalität 2 und ist keine Sprache.