Ergänzungsblatt 7

Vorbereitungsaufgaben

Vorbereitungsaufgabe 1

Wiederholen Sie die Begriffe aus Übungsblatt 0, Abschnitt 4.

- 1. Welche der Paare $(\mathbb{N}, +)$, $(\mathbb{N}, -)$, $(\mathbb{Z}, +)$, $(\mathbb{Z}, -)$, (\mathbb{N}, \max) , (\mathbb{N}, \min) , (\mathbb{Q}, \cdot) , $(\mathbb{Q} \setminus \{0\}, \cdot)$ und $(\{a, b\}^*, \cdot)$ sind Magmen/Halbgruppen/Monoide/Gruppen? Welche davon sind kommutativ?
- 2. Sei (S, \circ) eine endliche Halbgruppe mit $S = \{a, b, c, d, e, f\}$ als Trägermenge und der rechtsstehenden Verknüpfungstafel für \circ .
 - (a) Ist (S, \circ) ein Monoid?
 - (b) Ist (S, \circ) eine Gruppe?
 - (c) Ist (S, \circ) kommutativ?

Begründen Sie Ihre Antworten kurz.

0	a	b	c	d	e	f
a	d	e	f	\overline{a}	b	c
	$\int f$					a
c	e	f	d	c	a	b
d				d	e	
e	c	a	b		•	d
f	b	c	a	f	d	e

Vorbereitungsaufgabe 2

Seien (M, \circ) und (N, \bullet) zwei Monoide mit neutralen Elementen 1_M und 1_N . Eine Funktion $\varphi \colon M \to N$ heißt $Monoid\text{-}Homomorphismus}$, wenn gilt:

$$\varphi(1_M) = 1_N$$
 und $\forall x, y \in M : \varphi(x \circ y) = \varphi(x) \bullet \varphi(y).$

Wenn klar ist, dass es sich bei (M, \circ) und (N, \bullet) um Monoide handelt, nennen wir φ auch einfach Homomorphismus.

- 1. Geben Sie einen Homomorphismus zwischen $(\mathbb{R}, +)$ und (\mathbb{R}^+, \cdot) an.
- 2. Geben Sie einen Homomorphismus zwischen $(\{a,b\}^*,\cdot)$ und $(\mathbb{N},+)$ an.
- 3. Seien (A, \cdot_A) , (B, \cdot_B) und (C, \cdot_C) drei Monoide und $\varphi \colon A \to B$ und $\psi \colon B \to C$ zwei Homomorphismen. Zeigen Sie, dass die Funktion $\chi \colon A \to C$ mit $\chi(x) = \psi(\varphi(x))$ wieder ein Homomorphismus ist.

Bemerkung: Man schreibt dann $\chi = \psi \circ \varphi$ (" ψ nach φ ") und nennt χ die Komposition von φ und ψ .

Vorbereitungsaufgabe 3

Eine Äquivalenzrelation \sim heißt Kongruenzrelation auf ein Monoid (S, \circ) , wenn gilt:

$$\forall x, x', y, y' \in S \colon (x \sim x' \land y \sim y') \implies x \circ y \sim x' \circ y'.$$

Ist \sim eine Kongruenzrelation auf (S, \circ) , dann ist \bullet mit

$$[x]_{\sim} \bullet [y]_{\sim} = [x \circ y]_{\sim}$$

eine wohldefinierte Verknüpfung, die zusammen mit S/\sim ein Monoid bildet, das sogenannte Quotientenmonoid $(S/\sim, \bullet)$. Wohldefiniert heißt in diesem Fall, dass das Ergebnis der Verknüpfung $[x]_{\sim} \bullet [y]_{\sim}$ nicht von der konkreten Wahl der Repräsentanten x und y abhängt.

Sei \sim eine Relation auf $\mathbb Z$ mit $x \sim y$ genau dann, wenn $x^2 = y^2$.

- 1. Zeigen Sie, dass \sim eine Äquivalenzrelation auf \mathbb{Z} ist.
- 2. Zeigen Sie, dass \sim eine Kongruenzrelation auf (\mathbb{Z},\cdot) ist.
- 3. Zeigen Sie, dass \sim keine Kongruenzrelation auf $(\mathbb{Z}, +)$ ist.

Bemerkungen:

- Oft verwendet man dasselbe Symbol f
 ür und •, obwohl das formal zwei verschiedene Verkn
 üpfungen sind.
- Kongruenzrelationen können auch für Magmen, Halbgruppen und Gruppen definiert werden. Die entstehende Struktur $(S/\sim, \bullet)$ wird dann entsprechend *Quotientenmagma*, -halbgruppe oder -gruppe genannt.

Vorbereitungsaufgabe 4

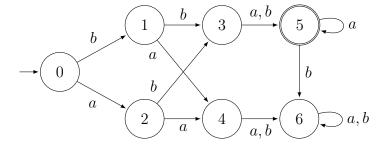
Beantworten Sie folgende Fragen:

- 1. Welche Charakterisierungen von regulären Sprachen kennen wir?
- 2. Unter welchen Operationen ist die Klasse der regulären Sprachen abgeschlossen?

Präsenzaufgaben

Präsenzaufgabe 1

Sei M der folgende DEA:



1. Führen Sie den in Einheit 16 vorgestellten Minimierungsalgorithmus durch.

Anstatt nicht äquivalente Zustände (bezüglich der Myhill-Nerode-Äquivalenz R_L) zu markieren, soll ein Zeuge eingetragen werden, der die Inäquivalenz der Zustände belegt.

Formal ist ein Wort $w \in \Sigma^*$ ein Zeuge für die Inäquivalenz von p und q, falls gilt:

$$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \notin F.$$

Tragen Sie in jedes Feld einen Zeugen minimaler Länge ein oder schreiben Sie " R_L ", falls die Zustände äquivalent sind.

- 2. Wie sieht der resultierende minimale DEA aus?
- 3. Geben Sie einen regulären Audruck γ mit $L(\gamma) = T(M)$ an.

Präsenzaufgabe 2

Seien (Σ^*, \cdot) das freie Monoid über dem Alphabet $\Sigma = \{a, b, c\}$ mit der Konkatenation von Wörtern als Verknüpfung und (M, \cdot) ein Monoid mit der Trägermenge $M = \{-1, 0, 1\}$ und der gewöhnlichen Multiplikation auf Zahlen als Verknüpfung.

Wir betrachten den Homomorphismus $\varphi \colon \Sigma^* \to M$, der durch $\varphi(a) = -1$, $\varphi(b) = 0$ und $\varphi(c) = 1$ eindeutig definiert ist.

- 1. Geben Sie die Verknüpfungstafel von (M, \cdot) an. Warum ist (M, \cdot) ein Monoid? Ist (M, \cdot) eine Gruppe?
- 2. Geben Sie eine Formel für $\varphi(w)$ für alle $w \in \Sigma^*$ an.
- 3. Welche Sprachen $L \subseteq \Sigma^*$ werden von (M, \cdot) mit φ erkannt?

Präsenzaufgabe 3

Seien R_L die Myhill-Nerode-Äquivalenz und \equiv_L die syntaktische Kongruenz. Bekanntlich sind R_L und \equiv_L Äquivalenzrelationen.

- 1. Zeigen Sie, dass R_L im Allgemeinen keine Kongruenzrelation auf (Σ^*, \cdot) ist.
- 2. Zeigen Sie, dass \equiv_L eine Kongruenzrelation auf (Σ^*, \cdot) ist.
- 3. Warum ist die auf Folie 16.7 definierte Funktion $\varphi \colon \Sigma^* \to \operatorname{Synt}(L)$ mit $\varphi(w) = [w]_{\equiv_L}$ ein Monoid-Homomorphismus?
- 4. Seien nun $L = \{a^m b^n \mid m, n \in \mathbb{N}\}$ und $\Sigma = \{a, b\}$. Geben Sie Quotientenmenge und Index von \equiv_L sowie die Verknüpfungstafel von $(\operatorname{Synt}(L), \cdot)$ an. Warum wird L von $\operatorname{Synt}(L)$ erkannt?

Erinnerung: Synt(L) = Σ^*/\equiv_L .

Präsenzaufgabe 4

Sei L eine reguläre Sprache über einem Alphabet Σ . Zeigen Sie, dass die Sprache

$$L' = \{w \mid ww \in L\}$$

auch regulär ist.

Hinweis: Sie dürfen verwenden, dass die Vereinigung endlich vieler regulärer Sprachen wieder regulär ist und dass für jeden DEA $M = (Q, \Sigma, \delta, s, F)$ die Sprache

$$L_{p,q} = \left\{ w \in \Sigma^* \, \middle| \, \hat{\delta}(p, w) = q \right\}$$

für alle $p, q \in Q$ regulär ist.

Zusatzaufgaben

Zusatzaufgabe 1

Aus Ergänzung 6 wissen wir, dass die Kongruenzrelation modulo n eine Äquivalenzrelation ist. Zeigen Sie für jedes $n \in \mathbb{N}$, dass die Kongruenzrelation modulo n sowohl auf $(\mathbb{Z}, +)$ als auch auf (\mathbb{Z}, \cdot) eine Kongruenzrelation ist.

Zusatzaufgabe 2

Seien (Σ^*, \cdot) das freie Monoid über dem Alphabet $\Sigma = \{a, b, c\}$ mit der Konkatenation von Wörtern als Verknüpfung und (M, \min) ein Monoid mit der Trägermenge $M = \{1, 2, 3\}$ und der Minimum-Operation

$$\min(x, y) = \begin{cases} x, & \text{falls } x \le y \\ y & \text{sonst} \end{cases}$$

als Verknüpfung.

Wir betrachten den Homomorphismus $\varphi \colon \Sigma^* \to M$, der durch $\varphi(a) = 1$, $\varphi(b) = 2$ und $\varphi(c) = 3$ eindeutig definiert ist.

- 1. Geben Sie die Verknüpfungstafel von (M, \min) an. Warum ist (M, \min) ein Monoid? Ist (M, \min) eine Gruppe?
- 2. Geben Sie eine Formel für $\varphi(w)$ für alle $w \in \Sigma^*$ an.
- 3. Welche Sprachen $L \subseteq \Sigma^*$ werden von (M, \min) mit φ erkannt?

Zusatzaufgabe 3

Seien Σ und Γ zwei Alphabete, $\varphi \colon \Sigma^* \to \Gamma^*$ ein Homomorphismus, A eine Sprache über Σ und B eine Sprache über Γ . Aus den Übungsblättern kennen wir folgende Abschlusseigenschaften:

$$A$$
 regulär $\Longrightarrow \varphi(A)$ regulär und B regulär $\Longrightarrow \varphi^{-1}(B)$ regulär.

Zeigen oder widerlegen Sie die Umkehrungen:

- 1. $\varphi(A)$ regulär $\Longrightarrow A$ regulär
- 2. $\varphi^{-1}(B)$ regulär $\Longrightarrow B$ regulär

Zusatzaufgabe 4

Zeigen Sie, dass jede endliche Sprache regulär ist.

Zusatzaufgabe 5

Zeigen Sie mithilfe der Abschlusseigenschaften regulärer Sprachen, dass folgende Sprachen nicht regulär sind.

- 1. $L_1 = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$
- 2. $L_2 = \{w \in \{a, b, c\}^* \mid |w|_a = |w|_b = |w|_c\}$

Verwenden Sie insbesondere weder das Pumping-Lemma noch den Satz von Myhill-Nerode. Sie dürfen jedoch verwenden, dass $L = \{a^n b^n \mid n \ge 1\}$ nicht regulär ist.